首页> 外文学位 >Transport in nanoscale devices.
【24h】

Transport in nanoscale devices.

机译:在纳米级设备中运输。

获取原文
获取原文并翻译 | 示例

摘要

The drive toward further miniaturization of silicon-based electronics has led to renewed efforts to build molecular-scale components. A key step in using individual molecules as active circuit elements is the understanding of charge transport through metal-molecule-metal junctions. In our work, we focus on the two transport mechanisms in nanoscale devices, namely hopping and tunneling transport. The former is studied using polyaniline nanofiber with a about 2microm conduction path; the latter is studied using molecular rotor devices with a mono molecular layer of about 3nm. The major issues involved in the synthesis, device processing, and characterization are discussed.;Hopping transport is studied using interfacial synthesized polyaniline nanofibers doped with chloride acid (HCl). The investigation of the temperature dependence of the conductivity suggests that polyaniline nanofibers are more sensitive to temperature than conventionally synthesized ones. The sensitivity dependence of the conductance on the doping concentration was measured, showing a saturation point based on the material property. A three-dimensional conduction hopping model is proposed to explain the experimental results.;Tunneling transport is the emphasis of this thesis work since it is the dominant conduction mechanism in the nanoscale regime. Tunneling transport is studied using a molecule rotor device comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si substrate as our model system because of its interesting optical, mechanical and electrical properties. A self-assembled chemical method of the molecule rotor layer was developed based on the strategy of a surface outward sequential synthesis that ensures the formation of Si-immobilized heteroleptic copper compounds. Both multilayer and monolayer molecular rotor devices were fabricated and the rotation of redox-dependent ligand rotation around the copper metal center was confirmed using optical absorption spectroscopy.;The switching effects of both multilayer and monolayer molecular rotor devices were characterized. We focus on the fabricated electrically driven sandwich-type molecular rotor device comprised of a monolayer of transition metal complexes containing redox-active pi-conjugated ligand subunits between a gold electrode and a highly-doped Si substrate. Our calculations predicted operational speeds in the picosecond timescale. Current-voltage spectroscopy curves (I-V) showed a negative differential resistance (NDR) associated with the devices, while reference samples of individual subunits, namely the redox-active pi-conjugated ligands and uncoordinated metal complexes alone, did not. Modeling of transverse molecular current conduction using time-dependent density function theory suggested the source of the observed NDR to be rotation of the ligand around Cu complexes. Optical absorption spectroscopy and the observed temperature dependence of the NDR behavior also support this hypothesis. The basic principle of the switching phenomenon as well as the band diagram is constructed to explain the electron transport behavior during the device operation. This is the first time a rotation-induced NDR effect on a solid support has been observed.;To study the scalability of the molecular rotor device, we extend our discussion to electron and ion transport and study their physical scalability. Furthermore, we describe the optimized chip architecture for integrating molecular switches with the conventional CMOS circuits to achieve a CMOL logic system.
机译:硅基电子产品进一步小型化的动力导致人们重新努力构建分子级组件。使用单个分子作为有源电路元件的关键步骤是理解通过金属-分子-金属结的电荷传输。在我们的工作中,我们专注于纳米级设备中的两种传输机制,即跳跃传输和隧道传输。前者是使用具有约2microm传导路径的聚苯胺纳米纤维进行研究的。使用具有约3nm的单分子层的分子转子装置研究了后者。讨论了合成,器件加工和表征中涉及的主要问题。;使用掺有氯酸(HCl)的界面合成聚苯胺纳米纤维研究了跳跃传输。对电导率的温度依赖性的研究表明,聚苯胺纳米纤维比常规合成的纤维对温度更敏感。测量了电导对掺杂浓度的灵敏度依赖性,显示了基于材料性质的饱和点。提出了三维传导跳跃模型来解释实验结果。隧道传输是本文工作的重点,因为它是纳米尺度机制的主导传导机制。使用分子转子装置研究隧道传输,该装置由单层的氧化还原活性连接的铜化合物夹在金电极和高掺杂的P + Si衬底之间作为我们的模型系统,因为它具有令人感兴趣的光学,机械和电学特性。基于表面向外顺序合成的策略,开发了一种分子转子层的自组装化学方法,该策略可确保形成Si固定的杂铜化合物。制备了多层和单层分子转子装置,并利用光吸收光谱法证实了氧化还原依赖性配体围绕铜金属中心的旋转。;表征了多层和单层分子转子装置的切换效果。我们专注于制造的电驱动三明治型分子转子装置,该装置由单层过渡金属配合物组成,其中过渡金属配合物在金电极和高掺杂Si衬底之间包含氧化还原活性pi共轭配体亚基。我们的计算预测了皮秒级的运行速度。电流-电压光谱曲线(I-V)显示与该设备相关的负微分电阻(NDR),而单个亚基的参考样品(即氧化还原活性pi共轭配体和单独的未配位金属络合物)没有。使用随时间变化的密度函数理论对横向分子电流传导进行建模表明,观察到的NDR的来源是围绕铜配合物的配体旋转。光学吸收光谱法和观察到的NDR行为的温度依赖性也支持这一假设。构造了开关现象的基本原理以及能带图,以解释器件工作期间的电子传输行为。这是首次观察到旋转诱导的NDR对固相支持物的影响。;为了研究分子转子装置的可扩展性,我们将讨论扩展到电子和离子传输,并研究其物理可扩展性。此外,我们描述了用于将分子开关与常规CMOS电路集成以实现CMOL逻辑系统的优化芯片架构。

著录项

  • 作者

    Xue, Mei.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号