首页> 外文学位 >Prediction of acoustic scattering in the time domain and its applications to rotorcraft noise.
【24h】

Prediction of acoustic scattering in the time domain and its applications to rotorcraft noise.

机译:时域中声散射的预测及其在旋翼航空器噪声中的应用。

获取原文
获取原文并翻译 | 示例

摘要

This work aims at the development of a numerical method for the analysis of acoustic scattering in the time domain and its applications to rotorcraft noise. This purpose is achieved by developing two independent methods: (1) an analytical formulation of the pressure gradient for an arbitrary moving source and (2) a time-domain moving equivalent source method.;First, the analytical formulation for the pressure gradient is developed to fulfill the boundary condition on a scattering surface to account for arbitrary moving incident sources. A semi-analytical formulation was derived from the gradient of the Ffowcs Williams-Hawkings (FW-H) equation. This formulation needs to calculate the observer time differentiation outside the integrals numerically. A numerical algorithm is developed to implement this formulation in an aeroacoustic prediction code. A new analytical formulation is presented in the thesis. In this formulation, the time differentiation is taken inside the integrals analytically. This formulation avoids the numerical time differentiation with respect to the observer time, which is computationally more efficient. The acoustic pressure gradient predicted by these two formulations is validated through comparison with available exact solutions for a stationary and moving monopole sources. The agreement between the predictions and exact solutions is excellent. One of the advantages of this analytic formulation is that it efficiently provides the boundary condition for the acoustic scattering of sound generated from an arbitrary moving source, such as rotating blades, which undergoes rotation, flapping and lead-lag motions. The formulation is applied to the rotor noise problems for two model rotors (UH-1H and HART-I). For HART-I rotor, CFD/CSD coupling was used to provide unsteady aerodynamics and trim solutions of the blade motion. A purely numerical approach is compared with the analytical formulations. The agreement between the analytical formulations and the numerical method is excellent for both stationary and moving observer cases.;The formulation for the pressure gradient is first used to predict acoustic scattering in the frequency domain. The prediction is validated with the exact solution for acoustic scattering generated by a monopole source by a stationary sphere. A Bo105 helicopter and a notional heavy lift quad tilt rotor are considered to demonstrate a potential significance of acoustic scattering of rotorcraft noise. NASA's Fast Scattering Code is used for the frequency-domain scattering solver.;Secondly, a new and efficient time domain acoustic scattering method using a moving equivalent source is developed to predict acoustic scattering in the time domain efficiently. The time-domain method provides entire frequency solutions in a single computation and is able to predict acoustic scattering of aperiodic signals. The method assumes an acoustically rigid surface for a scattering body and neglects the refraction effect by non-uniform flow around the scattering body. The pressure-gradient boundary condition is determined on a scattering surface and then the scattered field is calculated by using equivalent sources located within the scattering surface. Linear shape functions are used to discretize the strength of the equivalent sources in time and singular value decomposition is used to overcome potential numerical instability. The detailed numerical algorithm is addressed in the thesis. The method is more efficient numerically and easier to implement than other time-domain methods using a finite difference scheme or boundary integral equations because it is not necessary to find the solution in the entire domain, it uses a fewer number of equivalent sources than the surface mesh points, and it does not involve surface integrals. The method is validated against exact solutions for various cases including a single frequency monopole source, a dipole source, multiple sources, beat, and broadband noise sources. The predictions are found to be in excellent agreement with the exact solutions. The effect of the computational parameters including the number of surface mesh points, the number of equivalent sources, and the position of equivalent sources, etc, on the prediction is investigated and optimum parameters are presented. Acoustic scattering of sound from a moving source by a stationary body is studied to demonstrate scattering of an aperiodic signal. Acoustic scattering of sound produced by a moving source by a moving body is analyzed and the effect of the moving body on the scattered field is shown.;The numerical method is used to predict acoustic scattering of Bo105 helicopter rotor noise in the time domain. The time-domain code results of SPL are validated against the results obtained by the FSC. The effect of the geometry of the scattering body on the scattering of rotor noise is presented. Acoustic scattering of an impulsive noise is investigated to simulate main rotor BVI noise and its significance is addressed. From the computation of a range of frequencies in a single computation, computational time saving was achieved by a factor of about 200 compared to the frequency-domain approach.
机译:这项工作旨在开发一种数值方法,用于分析时域中的声散射及其在旋翼飞机噪声中的应用。通过开发两种独立的方法可以实现此目的:(1)任意移动源的压力梯度的解析公式和(2)时域移动等效源的方法。;首先,开发了压力梯度的解析公式满足散射表面上的边界条件,以考虑任意移动的入射源。从Ffowcs Williams-Hawkings(FW-H)方程的梯度得出半分析公式。该公式需要在积分之外计算观察者的时间差。开发了一种数值算法,以航空声预测代码实现此公式。本文提出了一种新的分析公式。在此公式中,时间微分被解析地积分。该公式避免了相对于观察者时间的数值时间差异,这在计算上更加有效。通过与固定和移动单极子源的可用精确解进行比较,可以验证这两种公式预测的声压梯度。预测与精确解之间的一致性非常好。这种分析公式的优点之一是,它有效地为从任意移动源(例如旋转的叶片)产生的声音的声学散射提供了边界条件,该旋转源经历了旋转,拍打和超前-滞后运动。该公式适用于两个模型转子(UH-1H和HART-1)的转子噪声问题。对于HART-1转子,使用CFD / CSD联轴器提供了不稳定的空气动力学特性和叶片运动的修整解决方案。将纯数值方法与分析公式进行比较。分析公式与数值方法之间的一致性对于固定和移动的观察者情况都是极好的。压力梯度公式首先用于预测频域中的声散射。用单极源由固定球产生的声散射的精确解验证了该预测。 Bo105直升机和名义上的重型举升四倾角旋翼被认为证明了旋翼飞机噪声的声散射的潜在重要性。 NASA的快速散射代码用于频域散射求解器。其次,开发了一种使用移动等效源的新型高效时域声散射方法,以有效地预测时域中的声散射。时域方法通过一次计算即可提供整个频率解,并且能够预测非周期性信号的声散射。该方法假定了散射体的声学刚性表面,而忽略了散射体周围不均匀流动引起的折射效应。在散射表面上确定压力梯度边界条件,然后使用位于散射表面内的等效源计算散射场。线性形状函数用于及时离散等效源的强度,奇异值分解用于克服潜在的数值不稳定性。本文讨论了详细的数值算法。与使用有限差分方案或边界积分方程的其他时域方法相比,该方法在数值上更有效并且更易于实现,因为不必在整个域中都找到解,它使用的等效源数量要少于表面数量网格点,并且不涉及曲面积分。该方法针对各种情况下的精确解决方案进行了验证,包括单频单极子源,偶极子源,多个源,差拍和宽带噪声源。发现这些预测与确切的解决方案非常吻合。计算参数的影响包括表面网格点的数量,等效源的数量以及等效源的位置等,对预测进行了研究,并提出了最佳参数。研究了静止物体从移动声源发出的声音的声学散射,以证明非周期性信号的散射。分析了运动源对运动源产生的声音的声散射,并显示了运动体对散射场的影响。数值方法用于时域Bo105直升机旋翼噪声的声散射预测。根据FSC获得的结果验证SPL的时域代码结果。提出了散射体的几何形状对转子噪声的散射的影响。研究了脉冲噪声的声散射,以模拟主转子BVI噪声,并解决了其重要性。通过一次计算中的一系列频率范围,与频域方法相比,可节省约200倍的计算时间。

著录项

  • 作者

    Lee, Seongkyu.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.;Physics Acoustics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 230 p.
  • 总页数 230
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:19

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号