首页> 外文学位 >Alternative materials for next-generation transistors: High-k/germanium-based MOSFET.
【24h】

Alternative materials for next-generation transistors: High-k/germanium-based MOSFET.

机译:下一代晶体管的替代材料:高k /锗基MOSFET。

获取原文
获取原文并翻译 | 示例

摘要

Electronic devices that make up 99% of the computer processor and memory market are based on silicon (semiconductor) and silicon dioxide (insulator) technology. Unfortunately the key transistor gate stack structure within the "traditional" technology has reached an intrinsic physical scaling limit; the ultrathin gate oxide, already at 1nm thickness, cannot be made thinner without resulting in an intolerably high leakage current and reduced drive current. This limitation can be avoided by replacing the thin gate dielectric with a thicker film of an alternative material with a permittivity higher than that of SiO2, an accomplishing that has been realized in production just as this thesis goes to press. To further increase device performance, replacing the Si semiconductor with germanium as an alternative channel material is an attractive option for its high mobility and narrow band gap. However, the lack of a stable insulating oxide with high quality electrical properties prevents the fabrication of competitive Ge-based metal oxide semiconductor field effect transistors (MOSFETs).;This dissertation reports the study of potential future-generation transistors with high-k dielectrics (HfO2 and Al2O3) on Ge substrates. A brief review of current research and development is first given followed by an introduction of the thin film characterization techniques used in this work. Various cleaning treatments as well as surface passivation methods using wet chemistry have been investigated on Ge substrates. Next, thin high-k dielectric films of HfO2 and Al2O3 have been deposited on Ge using atomic layer deposition (ALD). ALD permits films to be grown with monolayer control and excellent film conformality.;Physical, chemical and electrical characterization has been performed on the multilayer film structures. Optimization of the film growth has been developed and we have demonstrated high quality with Au/HfO2/Ge nMOS devices. Capacitance-voltage electrical measurements show that sulfur passivation methods on Ge greatly decrease the interface state density and improve the device electrical properties. The same improvements have also been observed on the similarly processed Ge-based MOS capacitors with Al 2O3 dielectric layers.
机译:构成计算机处理器和内存市场99%的电子设备均基于硅(半导体)和二氧化硅(绝缘体)技术。不幸的是,“传统”技术中的关键晶体管栅极堆叠结构已经达到了固有的物理缩放极限。已经达到1nm厚度的超薄栅极氧化物,如果不导致难以忍受的高泄漏电流和减小的驱动电流,就不能做得更薄。通过用比SiO2高的介电常数的替代材料的厚膜代替薄的栅极电介质,可以避免这种局限性,正如本论文付印之时,这一成就已在生产中实现。为了进一步提高器件性能,以锗作为替代沟道材料替代Si半导体是一种具有高迁移率和窄带隙的极具吸引力的选择。然而,由于缺乏稳定稳定的具有高质量电学性能的绝缘氧化物,因此无法制造出具有竞争力的Ge基金属氧化物半导体场效应晶体管(MOSFETs)。该论文报道了潜在的具有高k电介质的下一代晶体管的研究( Ge衬底上的HfO2和Al2O3)。首先简要介绍了当前的研究与开发,然后介绍了这项工作中使用的薄膜表征技术。已经对Ge衬底上的各种清洁处理以及使用湿化学的表面钝化方法进行了研究。接下来,使用原子层沉积(ALD)在Ge上沉积了HfO2和Al2O3的高k介电薄膜。 ALD允许在单层控制和优异的膜保形性的情况下生长膜。;已经对多层膜结构进行了物理,化学和电学表征。已经开发了膜生长的优化,并且我们已经证明了Au / HfO2 / Ge nMOS器件的高质量。电容-电压电学测量表明,Ge上的硫钝化方法大大降低了界面态密度并改善了器件的电性能。在具有Al 2O3介电层的类似处理的Ge基MOS电容器上也观察到了相同的改进。

著录项

  • 作者

    Hsueh, Chein-Lan.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Physics Molecular.;Engineering Materials Science.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号