首页> 美国卫生研究院文献>PLoS Genetics >Patterning mechanisms diversify neuroepithelial domains in the Drosophila optic placode
【2h】

Patterning mechanisms diversify neuroepithelial domains in the Drosophila optic placode

机译:模式机制使果蝇视斑中的神经上皮结构域多样化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The central nervous system develops from monolayered neuroepithelial sheets. In a first step patterning mechanisms subdivide the seemingly uniform epithelia into domains allowing an increase of neuronal diversity in a tightly controlled spatial and temporal manner. In Drosophila, neuroepithelial patterning of the embryonic optic placode gives rise to the larval eye primordium, consisting of two photoreceptor (PR) precursor types (primary and secondary), as well as the optic lobe primordium, which during larval and pupal stages develops into the prominent optic ganglia. Here, we characterize a genetic network that regulates the balance between larval eye and optic lobe precursors, as well as between primary and secondary PR precursors. In a first step the proneural factor Atonal (Ato) specifies larval eye precursors, while the orphan nuclear receptor Tailless (Tll) is crucial for the specification of optic lobe precursors. The Hedgehog and Notch signaling pathways act upstream of Ato and Tll to coordinate neural precursor specification in a timely manner. The correct spatial placement of the boundary between Ato and Tll in turn is required to control the precise number of primary and secondary PR precursors. In a second step, Notch signaling also controls a binary cell fate decision, thus, acts at the top of a cascade of transcription factor interactions to define PR subtype identity. Our model serves as an example of how combinatorial action of cell extrinsic and cell intrinsic factors control neural tissue patterning.
机译:中枢神经系统从单层神经上皮层发展而来。第一步,图案形成机制将看似均匀的上皮细胞细分为多个域,从而以严格控制的时空方式增加神经元多样性。在果蝇中,胚胎视斑的神经上皮形成引起幼虫眼原基,其由两种光感受器(PR)前体类型(原发和继发)以及视叶原基组成,其在幼虫和p阶段发展为幼虫。突出的神经节。在这里,我们描述了一个遗传网络,该遗传网络调节幼虫眼和视叶前体之间以及初级和次级PR前体之间的平衡。第一步,神经元因子Atonal(Ato)指定幼虫眼的前体,而孤儿核受体Tailless(Tll)对于视神经前体的规格至关重要。 Hedgehog和Notch信号通路在Ato和Tll的上游起作用,以及时协调神经前体指标。进而需要正确的空间分布在Ato和Tll之间的边界,以控制主要和次要PR前体的精确数量。在第二步中,Notch信号还控制着二进制细胞命运的决定,因此,它在转录因子相互作用的级联的顶部起作用,以定义PR亚型的同一性。我们的模型作为细胞外在因素和细胞内在因素的组合作用如何控制神经组织图案的一个例子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号