首页> 美国卫生研究院文献>Journal of the Royal Society Interface >Dynamic cellular finite-element method for modelling large-scale cell migration and proliferation under the control of mechanical and biochemical cues: a study of re-epithelialization
【2h】

Dynamic cellular finite-element method for modelling large-scale cell migration and proliferation under the control of mechanical and biochemical cues: a study of re-epithelialization

机译:机械和生化线索控制下的大规模细胞迁移和增殖建模的动态细胞有限元方法:重新上皮化的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational modelling of cells can reveal insight into the mechanisms of the important processes of tissue development. However, current cell models have limitations and are challenged to model detailed changes in cellular shapes and physical mechanics when thousands of migrating and interacting cells need to be modelled. Here we describe a novel dynamic cellular finite-element model (DyCelFEM), which accounts for changes in cellular shapes and mechanics. It also models the full range of cell motion, from movements of individual cells to collective cell migrations. The transmission of mechanical forces regulated by intercellular adhesions and their ruptures are also accounted for. Intra-cellular protein signalling networks controlling cell behaviours are embedded in individual cells. We employ DyCelFEM to examine specific effects of biochemical and mechanical cues in regulating cell migration and proliferation, and in controlling tissue patterning using a simplified re-epithelialization model of wound tissue. Our results suggest that biochemical cues are better at guiding cell migration with improved directionality and persistence, while mechanical cues are better at coordinating collective cell migration. Overall, DyCelFEM can be used to study developmental processes when a large population of migrating cells under mechanical and biochemical controls experience complex changes in cell shapes and mechanics.
机译:细胞的计算模型可以揭示组织发展的重要过程的机制的见解。但是,当需要对成千上万个迁移和交互作用的细胞进行建模时,当前的细胞模型具有局限性,并且难以建模详细的细胞形状和物理力学变化。在这里,我们描述了一种新颖的动态细胞有限元模型(DyCelFEM),该模型可以解释细胞形状和力学的变化。它还模拟了整个细胞运动范围,从单个细胞的运动到集体细胞的迁移。还考虑了由细胞间粘附及其破裂调节的机械力的传递。控制细胞行为的细胞内蛋白质信号网络被嵌入单个细胞中。我们使用DyCelFEM来检查生化和机械线索在调节细胞迁移和增殖以及使用伤口组织的简化上皮化模型控制组织模式中的特定作用。我们的结果表明,生化线索在指导细胞迁​​移方面具有更好的方向性和持久性,而机械线索则在协调集体细胞迁移方面具有更好的表现。总体而言,当大量受机械和生化控制的迁移细胞经历复杂的细胞形状和力学变化时,DyCelFEM可用于研究发育过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号