首页> 美国卫生研究院文献>Scientific Reports >Strain-balanced type-II superlattices for efficient multi-junction solar cells
【2h】

Strain-balanced type-II superlattices for efficient multi-junction solar cells

机译:应变平衡II型超晶格用于高效多结太阳能电池

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multi-junction solar cells made by assembling semiconductor materials with different bandgap energies have hold the record conversion efficiencies for many years and are currently approaching 50%. Theoretical efficiency limits make use of optimum designs with the right lattice constant-bandgap energy combination, which requires a 1.0–1.15 eV material lattice-matched to GaAs/Ge. Nevertheless, the lack of suitable semiconductor materials is hindering the achievement of the predicted efficiencies, since the only candidates were up to now complex quaternary and quinary alloys with inherent epitaxial growth problems that degrade carrier dynamics. Here we show how the use of strain-balanced GaAsSb/GaAsN superlattices might solve this problem. We demonstrate that the spatial separation of Sb and N atoms avoids the ubiquitous growth problems and improves crystal quality. Moreover, these new structures allow for additional control of the effective bandgap through the period thickness and provide a type-II band alignment with long carrier lifetimes. All this leads to a strong enhancement of the external quantum efficiency under photovoltaic conditions with respect to bulk layers of equivalent thickness. Our results show that GaAsSb/GaAsN superlattices with short periods are the ideal (pseudo)material to be integrated in new GaAs/Ge-based multi-junction solar cells that could approach the theoretical efficiency limit.
机译:通过组装具有不同带隙能量的半导体材料制成的多结太阳能电池已保持了创纪录的转换效率多年,目前已接近50%。理论效率极限利用具有正确的晶格恒定带隙能量组合的最佳设计,这需要与GaAs / Ge晶格匹配的1.0–1.15 eV材料。然而,由于合适的半导体材料的缺乏阻碍了预期的效率的实现,因为迄今为止仅有的候选材料是复杂的四元和五元合金,其固有的外延生长问题降低了载流子动力学。在这里,我们展示了如何使用应变平衡的GaAsSb / GaAsN超晶格解决这个问题。我们证明,Sb和N原子的空间分隔避免了普遍存在的生长问题并提高了晶体质量。此外,这些新结构允许在整个周期厚度内对有效带隙进行额外控制,并提供具有较长载流子寿命的II型带对准。所有这些导致相对于相等厚度的体层在光伏条件下大大增强了外部量子效率。我们的结果表明,短周期的GaAsSb / GaAsN超晶格是理想的(伪)材料,可以集成到新的GaAs / Ge基多结太阳能电池中,这种材料可以接近理论效率极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号