首页> 美国卫生研究院文献>PLoS Clinical Trials >The Repeated Replacement Method: A Pure Lagrangian Meshfree Method for Computational Fluid Dynamics
【2h】

The Repeated Replacement Method: A Pure Lagrangian Meshfree Method for Computational Fluid Dynamics

机译:重复替换方法:用于计算流体动力学的纯拉格朗日无网格方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we describe the repeated replacement method (RRM), a new meshfree method for computational fluid dynamics (CFD). RRM simulates fluid flow by modeling compressible fluids’ tendency to evolve towards a state of constant density, velocity, and pressure. To evolve a fluid flow simulation forward in time, RRM repeatedly “chops out” fluid from active areas and replaces it with new “flattened” fluid cells with the same mass, momentum, and energy. We call the new cells “flattened” because we give them constant density, velocity, and pressure, even though the chopped-out fluid may have had gradients in these primitive variables. RRM adaptively chooses the sizes and locations of the areas it chops out and replaces. It creates more and smaller new cells in areas of high gradient, and fewer and larger new cells in areas of lower gradient. This naturally leads to an adaptive level of accuracy, where more computational effort is spent on active areas of the fluid, and less effort is spent on inactive areas. We show that for common test problems, RRM produces results similar to other high-resolution CFD methods, while using a very different mathematical framework. RRM does not use Riemann solvers, flux or slope limiters, a mesh, or a stencil, and it operates in a purely Lagrangian mode. RRM also does not evaluate numerical derivatives, does not integrate equations of motion, and does not solve systems of equations.
机译:在本文中,我们描述了重复替换方法(RRM),这是一种用于计算流体动力学的新无网格方法(CFD)。 RRM通过对可压缩流体向密度,速度和压力恒定状态演变的趋势进行建模来模拟流体流动。为了及时进行流体流动仿真,RRM反复从活动区域“截断”流体,并用质量,动量和能量相同的新“扁平”流体单元代替。我们称这些新单元为“扁平化”,因为我们给了它们恒定的密度,速度和压力,即使切碎的流体在这些原始变量中可能具有梯度。 RRM自适应地选择要剪切和替换的区域的大小和位置。它在高梯度区域中创建越来越多的新单元格,在低梯度区域中创建越来越少的新单元格。这自然会导致适应性的精度水平,其中在流体的活动区域上花费了更多的计算工作,而在非活动区域上花费了更少的工作。我们表明,对于常见的测试问题,RRM产生的结果与其他高分辨率CFD方法相似,同时使用的是非常不同的数学框架。 RRM不使用Riemann求解器,通量或斜率限制器,网格或模版,而是在纯Lagrangian模式下运行。 RRM也不评估数值导数,不积分运动方程,也不求解方程组。

著录项

  • 期刊名称 PLoS Clinical Trials
  • 作者

    Wade A. Walker;

  • 作者单位
  • 年(卷),期 2009(7),7
  • 年度 2009
  • 页码 e39999
  • 总页数 25
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号