首页> 外文期刊>International Journal of Information Technology >Cascaded Transcritical/Supercritical CO2 Cycles and Organic Rankine Cycles to Recover Low-Temperature Waste Heat and LNG Cold Energy Simultaneously
【24h】

Cascaded Transcritical/Supercritical CO2 Cycles and Organic Rankine Cycles to Recover Low-Temperature Waste Heat and LNG Cold Energy Simultaneously

机译:级联的跨临界/超临界CO2循环和有机朗肯循环,可同时回收低温废热和LNG冷能

获取原文
           

摘要

Low-temperature waste heat is abundant in the process industries, and large amounts of Liquefied Natural Gas (LNG) cold energy are discarded without being recovered properly in LNG terminals. Power generation is an effective way to utilize low-temperature waste heat and LNG cold energy simultaneously. Organic Rankine Cycles (ORCs) and CO2 power cycles are promising technologies to convert low-temperature waste heat and LNG cold energy into electricity. If waste heat and LNG cold energy are utilized simultaneously in one system, the performance may outperform separate systems utilizing low-temperature waste heat and LNG cold energy, respectively. Low-temperature waste heat acts as the heat source and LNG regasification acts as the heat sink in the combined system. Due to the large temperature difference between the heat source and the heat sink, cascaded power cycle configurations are proposed in this paper. Cascaded power cycles can improve the energy efficiency of the system considerably. The cycle operating at a higher temperature to recover waste heat is called top cycle and the cycle operating at a lower temperature to utilize LNG cold energy is called bottom cycle in this study. The top cycle condensation heat is used as the heat source in the bottom cycle. The top cycle can be an ORC, transcritical CO2 (tCO2) cycle or supercritical CO2 (sCO2) cycle, while the bottom cycle only can be an ORC due to the low-temperature range of the bottom cycle. However, the thermodynamic path of the tCO2 cycle and sCO2 cycle are different from that of an ORC. The tCO2 cycle and the sCO2 cycle perform better than an ORC for sensible waste heat recovery due to a better temperature match with the waste heat source. Different combinations of the tCO2 cycle, sCO2 cycle and ORC are compared to screen the best configurations of the cascaded power cycles. The influence of the working fluid and the operating conditions are also investigated in this study. Each configuration is modeled and optimized in Aspen HYSYS. The results show that cascaded tCO2/ORC performs better compared with cascaded ORC/ORC and cascaded sCO2/ORC for the case study.
机译:加工行业中的低温废热丰富,大量的液化天然气(LNG)冷能被丢弃,而没有在LNG接收站中适当回收。发电是同时利用低温废热和LNG冷能的有效方法。有机朗肯循环(ORC)和CO2功率循环是将低温废热和LNG冷能转化为电能的有前途的技术。如果在一个系统中同时利用废热和LNG冷能,则性能可能会优于分别利用低温废热和LNG冷能的单独系统。在组合系统中,低温废热充当热源,LNG再气化充当散热器。由于热源和散热器之间的温差较大,因此本文提出了级联的功率循环配置。级联的电源循环可以大大提高系统的能源效率。在本研究中,在较高温度下操作以回收废热的循环称为顶部循环,而在较低温度下操作以利用LNG冷能的循环称为底部循环。顶部循环的冷凝热被用作底部循环的热源。顶部循环可以是ORC,跨临界CO2(tCO2)循环或超临界CO2(sCO2)循环,而底部循环由于底部循环的低温范围而只能是ORC。但是,tCO2循环和sCO2循环的热力学路径与ORC的热力学路径不同。在合理的废热回收方面,tCO2循环和sCO2循环的性能优于ORC,这是因为与废热源的温度匹配更好。比较了tCO2循环,sCO2循环和ORC的不同组合,以筛选级联功率循环的最佳配置。在这项研究中还研究了工作流体和工作条件的影响。每个配置都在Aspen HYSYS中建模和优化。结果表明,在案例研究中,级联的tCO2 / ORC比级联的ORC / ORC和级联的sCO2 / ORC更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号