...
首页> 外文期刊>FEBS Open Bio >Novel insights into structure-function mechanism and tissue-specific expression profiling of full-length dxr gene from Cymbopogon winterianus
【24h】

Novel insights into structure-function mechanism and tissue-specific expression profiling of full-length dxr gene from Cymbopogon winterianus

机译:Cymbopogon winterianus全长dxr基因的结构功能机制和组织特异性表达谱的新见解

获取原文
           

摘要

The 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR; EC1.1.1.267), an NADPH-dependent reductase, plays a pivotal role in the methylerythritol 4-phosphate pathway (MEP), in the conversion of 1-deoxy-d-xylulose-5-phosphate (DXP) into MEP. The sheath and leaf of citronella (Cymbopogon winterianus) accumulates large amount of terpenes and sesquiterpenes with proven medicinal value and economic uses. Thus, sequencing of full length dxr gene and its characterization seems to be a valuable resource in metabolic engineering to alter the flux of isoprenoid active ingredients in plants. In this study, full length DXR from citronella was characterized through in silico and tissue-specific expression studies to explain its structure-function mechanism, mode of cofactor recognition and differential expression. The modelled DXR has a three-domain architecture and its active site comprised of a cofactor (NADPH) binding pocket and the substrate-binding pocket. Molecular dynamics simulation studies indicated that DXR model retained most of its secondary structure during 10ns simulation in aqueous solution. The modelled DXR superimposes well with its closest structural homolog but subtle variations in the charge distribution over the cofactor recognition site were noticed. Molecular docking study revealed critical residues aiding tight anchoring NADPH within the active pocket of DXR. Tissue-specific differential expression analysis using semi-quantitative RT-PCR and qRT-PCR in various tissues of citronella plant revealed distinct differential expression of DXR. To our knowledge, this is the first ever report on DXR from the important medicinal plant citronella and further characterization of this gene will open up better avenues for metabolic engineering of secondary metabolite pathway genes from medicinal plants in the near future.
机译:NADPH依赖性还原酶1-脱氧-d-木酮糖-5-磷酸还原异构酶(DXR; EC1.1.1.267)在甲基赤藓糖醇4-磷酸途径(MEP)中起着关键作用,转化为1-脱氧-d-木酮糖-5-磷酸酯(DXP)进入MEP。香茅(Cymbopogon winterianus)的鞘和叶积累了大量的萜烯和倍半萜,具有公认的医学价值和经济用途。因此,全长dxr基因的测序及其表征似乎是代谢工程中改变植物中类异戊二烯活性成分通量的宝贵资源。在这项研究中,通过计算机和组织特异性表达研究表征了香茅的全长DXR,以解释其结构功能机制,辅因子识别模式和差异表达。建模的DXR具有三域结构,其活性位点由辅因子(NADPH)结合袋和底物结合袋组成。分子动力学模拟研究表明,DXR模型在水溶液中10ns模拟过程中保留了其大部分二级结构。建模的DXR与其最接近的结构同源物很好地重叠,但是注意到辅因子识别位点上电荷分布的细微变化。分子对接研究表明,关键残基可帮助DXR活性囊紧密固定NADPH。在香茅植物的各种组织中使用半定量RT-PCR和qRT-PCR进行组织特异性差异表达分析,结果表明DXR具有明显的差异表达。据我们所知,这是重要药用植物香茅对DXR的首次报道,并且对该基因的进一步表征将在不久的将来为药用植物次生代谢途径基因的代谢工程开辟更好的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号