...
首页> 外文期刊>Applied Microbiology >Association of Constitutive Hyperphosphorylation of Hsf1p with a Defective Ethanol Stress Response in Saccharomyces cerevisiae Sake Yeast Strains
【24h】

Association of Constitutive Hyperphosphorylation of Hsf1p with a Defective Ethanol Stress Response in Saccharomyces cerevisiae Sake Yeast Strains

机译:Hsf1p的本构性过度磷酸化与酿酒酵母清酒酵母菌株中乙醇应激反应的缺陷

获取原文
           

摘要

Modern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p in Saccharomyces cerevisiae sake yeast. The HSE- lacZ activity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. Since HSF1 allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δ ppt1 mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entire PPT1 gene locus. We confirmed that the expression of laboratory yeast-derived functional PPT1 recovered the HSE-mediated stress response of sake yeast. In addition, deletion of PPT1 in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of the PPT1 gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains.
机译:产生高浓度乙醇的现代清酒酵母菌株出乎意料地对清酒酿造过程中的环境压力敏感。为了揭示其潜在的机制,我们调查了由酿酒酵母清酒酵母中的热休克元件(HSE)和热休克转录因子Hsf1p介导的特征明确的酵母应激反应。与实验室酵母相比,在清酒发酵过程中和在急性乙醇胁迫下,清酒酵母的HSE-lacZ活性受到严重损害。此外,现代清酒酵母的Hsf1p高度且组成性地过度磷酸化,而与细胞外应激无关。由于清酒或实验室酵母中HSF1等位基因的替换不会显着影响HSE介导的乙醇应激反应或Hsf1p磷酸化模式,因此推测Hsf1p的调控机制在这些类型的酵母中具有不同的功能。为了鉴定其损失影响Hsf1p控制的磷酸酶,我们在实验室菌株背景中筛选了一系列磷酸酶基因缺失突变体。在这29个突变体中,Δppt1突变体表现出Hsf1p的组成型超磷酸化,类似于现代清酒酵母菌株,后者缺乏完整的PPT1基因位点。我们证实,实验室酵母衍生的功能性PPT1的表达恢复了清酒酵母HSE介导的应激反应。此外,实验室酵母中PPT1的缺失导致发酵能力增强。总之,这些数据表明由PPT1基因的丧失引起的Hsf1p的过度磷酸化至少部分地解释了现代清酒酵母菌株的缺陷应激反应和高乙醇生产率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号