首页> 外文期刊>Physical Review X >Hybridization at Superconductor-Semiconductor Interfaces
【24h】

Hybridization at Superconductor-Semiconductor Interfaces

机译:超导体 - 半导体界面的杂交

获取原文
           

摘要

Hybrid superconductor-semiconductor devices are currently one of the most promising platforms for realizing Majorana zero modes. Their topological properties are controlled by the band alignment of the two materials, as well as the electrostatic environment, which are currently not well understood. Here, we seek to fill in this gap and address the role of band bending and superconductor-semiconductor hybridization in such devices by analyzing a gated single Al-InAs interface using a self-consistent Schr?dinger-Poisson approach. Our numerical analysis shows that the band bending leads to an interface quantum well, which localizes the charge in the system near the superconductor-semiconductor interface. We investigate the hybrid band structure and analyze its response to varying the gate voltage and thickness of the Al layer. This is done by studying the hybridization degrees of the individual subbands, which determine the induced pairing and effective g factors. The numerical results are backed by approximate analytical expressions which further clarify key aspects of the band structure. We find that one can obtain states with strong superconductor-semiconductor hybridization at the Fermi energy, but this requires a fine balance of parameters, with the most important constraint being on the width of the Al layer. In fact, in the regime of interest, we find an almost periodic dependence of the hybridization degree on the Al width, with a period roughly equal to the thickness of an Al monolayer. This implies that disorder and shape irregularities, present in realistic devices, may play an important role for averaging out this sensitivity and, thus, may be necessary for stabilizing the topological phase.
机译:混合超导体 - 半导体器件目前是最有前途的平台之一,用于实现Majorana零模式。它们的拓扑特性由两种材料的带对准来控制,以及目前不太了解的静电环境。在这里,我们寻求填补这种差距并通过使用自我一致的SCHR?Dinger-Poisson方法分析所设定的单个Al-InAs界面,解决这些装置中的带弯曲和超导体半导体杂交的作用。我们的数值分析表明,带弯曲导致接口量子阱,其定位在超导体半导体界面附近的系统中的电荷。我们研究了混合带结构,并分析了其响应,以改变Al层的栅极电压和厚度。这是通过研究各个子带的杂交程度来完成的,该子带的杂交程度决定了诱导的配对和有效的G因子。通过近似分析表达式来支持数值结果,该分析表达式进一步阐明了带结构的关键方面。我们发现,可以在费米能量下获得具有强大超导体半导体杂交的状态,但这需要参数的精细平衡,最重要的约束在Al层的宽度上。事实上,在感兴趣的政权中,我们发现杂交程度对Al宽度的几乎定期依赖性,周期大致等于Al单层的厚度。这意味着在现实装置中存在的紊乱和形状不规则性可能在稳定拓扑阶段可能需要发挥重要作用,因此可能是必要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号