首页> 外文期刊>Fuel >Liquid permeability of organic nanopores in shale: Calculation and analysis
【24h】

Liquid permeability of organic nanopores in shale: Calculation and analysis

机译:页岩中有机纳米孔的液体渗透性:计算与分析

获取原文
获取原文并翻译 | 示例
           

摘要

The contribution of kerogen to oil flow in shale rock is not well understood but is crucial, and understanding the transport behaviors of oil through organic nanopores is important for shale oil reservoir development. Based on relevant MDS (molecular dynamics simulations), experimental and theoretical studies, a mathematical model was derived to calculate the liquid permeability of organic nanopores in shale. The model can incorporate the mechanisms of boundary slip and physical adsorption, and the complicated structural properties are included. The results show the following: (a) Flow enhancement or permeability is linearly related to the pore length. (b) For pore radii under 10 nm, the permeability changes slightly. The corresponding equivalent pore radius is 24 nm. (c) There is no need to consider the threshold pressure gradient or nonlinear flow characteristics for oil flow in kerogen. (d) For pore radii greater than 200 nm, slip is negligible. (e) Physical adsorption cannot obviously influence the permeability of the organic nanopores. (f) For pores larger than 500 nm, the mass flux of the physically adsorbed oil is negligible. By the definition of the normalized velocity, the shape of the velocity profile is studied quantitatively to show the dominance of a plug type velocity profile. The relationship between the slip factor and normalized velocity is also derived. As the normalized velocity approaches 1, the slip factor increases rapidly to infinity. This work can help in the understanding of the flow properties of kerogen and will shed light on the development of shale resources. (C) 2017 Elsevier Ltd. All rights reserved.
机译:干酪根对页岩中油流的贡献尚不清楚,但至关重要,而了解油通过有机纳米孔的传输行为对页岩油藏的开发很重要。基于相关的MDS(分子动力学模拟),实验和理论研究,推导了数学模型来计算页岩中有机纳米孔的液体渗透率。该模型可以结合边界滑动和物理吸附的机理,并包括复杂的结构特性。结果表明:(a)流动增强或渗透率与孔长成线性关系。 (b)对于10 nm以下的孔半径,渗透率会略有变化。相应的等效孔半径为24 nm。 (c)对于干酪根中的油流,无需考虑阈值压力梯度或非线性流动特性。 (d)对于大于200 nm的孔半径,可忽略不计。 (e)物理吸附不能明显影响有机纳米孔的渗透性。 (f)对于大于500 nm的孔,物理吸附油的质量通量可以忽略不计。通过归一化速度的定义,对速度分布图的形状进行了定量研究,以显示塞状速度分布图的优势。还推导了滑移因子和归一化速度之间的关系。当归一化速度接近1时,滑移系数迅速增加到无穷大。这项工作可以帮助理解干酪根的流动特性,并为页岩资源的开发提供启示。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Fuel》 |2017年第15期|426-434|共9页
  • 作者单位

    China Univ Petr East China, Sch Petr Engn, Qingdao, Peoples R China;

    China Univ Petr East China, Sch Petr Engn, Qingdao, Peoples R China;

    China Univ Petr East China, Sch Petr Engn, Qingdao, Peoples R China;

    CNPC, Chuanqing Drilling Co, Downhole Serv Co, Chengdu 610051, Peoples R China;

    CNPC, Chuanqing Drilling Co, Downhole Serv Co, Chengdu 610051, Peoples R China;

    China Univ Petr East China, Sch Petr Engn, Qingdao, Peoples R China|Univ Calgary, Dept Chem & Petr Engn, Calgary, AB T2N 1N4, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Liquid permeability; Shale; Organic nanopores; Boundary slip; Physical adsorption;

    机译:液体渗透率;页岩;有机纳米孔;边界滑移;物理吸附;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号