首页> 外文期刊>Mechanical systems and signal processing >Dynamic modeling and hierarchical compound control of a novel 2-DOF flexible parallel manipulator with multiple actuation modes
【24h】

Dynamic modeling and hierarchical compound control of a novel 2-DOF flexible parallel manipulator with multiple actuation modes

机译:新型多自由度2-DOF柔性并联机械手的动力学建模和分层复合控制

获取原文
获取原文并翻译 | 示例
           

摘要

This paper addresses the problem of rigid-flexible coupling dynamic modeling and active control of a novel flexible parallel manipulator (PM) with multiple actuation modes. Firstly, based on the flexible multi-body dynamics theory, the rigid-flexible coupling dynamic model (RFDM) of system is developed by virtue of the augmented Lagrangian multipliers approach. For completeness, the mathematical models of permanent magnet synchronous motor (PMSM) and piezoelectric transducer (PZT) are further established and integrated with the RFDM of mechanical system to formulate the electromechanical coupling dynamic model (ECDM). To achieve the trajectory tracking and vibration suppression, a hierarchical compound control strategy is presented. Within this control strategy, the proportional-differential (PD) feedback controller is employed to realize the trajectory tracking of end-effector, while the strain and strain rate feedback (SSRF) controller is developed to restrain the vibration of the flexible links using PZT. Furthermore, the stability of the control algorithm is demonstrated based on the Lyapunov stability theory. Finally, two simulation case studies are performed to illustrate the effectiveness of the proposed approach. The results indicate that, under the redundant actuation mode, the hierarchical compound control strategy can guarantee the flexible PM achieves singularity-free motion and vibration attenuation within task workspace simultaneously. The systematic methodology proposed in this study can be conveniently extended for the dynamic modeling and efficient controller design of other flexible PMs, especially the emerging ones with multiple actuation modes.
机译:本文解决了一种具有多种驱动方式的新型柔性并联机械手(PM)的刚柔耦合动力学建模和主动控制问题。首先,基于柔性多体动力学理论,利用增强拉格朗日乘子法,建立了系统的刚柔耦合动力学模型(RFDM)。为完整起见,进一步建立了永磁同步电动机(PMSM)和压电换能器(PZT)的数学模型,并将其与机械系统的RFDM集成在一起,以建立机电耦合动力学模型(ECDM)。为了实现轨迹跟踪和振动抑制,提出了一种分层复合控制策略。在这种控制策略内,比例微分(PD)反馈控制器用于实现末端执行器的轨迹跟踪,而应变和应变率反馈(SSRF)控制器则用于使用PZT约束柔性链节的振动。此外,基于李雅普诺夫稳定性理论证明了控制算法的稳定性。最后,进行了两个仿真案例研究,以说明所提出方法的有效性。结果表明,在冗余驱动模式下,分层复合控制策略可以保证柔性永磁同步实现任务工作空间内的无奇异运动和振动衰减。本研究中提出的系统方法可以方便地扩展到其他柔性PM的动态建模和有效的控制器设计,尤其是新兴的具有多种驱动模式的PM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号