首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. B, Beam Interactions with Materials and Atoms >Ion implantation of boron into silicon by use of the boron cathodic-arc plasma generator: First results
【24h】

Ion implantation of boron into silicon by use of the boron cathodic-arc plasma generator: First results

机译:使用硼阴极电弧等离子体发生器将硼离子注入硅中:初步结果

获取原文
获取原文并翻译 | 示例
       

摘要

A high fluence of boron (B) has been ion implanted into Si by use of a B cathodic-arc plasma generator. The purpose was to demonstrate the viability of the technique for B p-doping. Operation of a pure solid B cathode in a cathodic arc depends on a patented technique for consolidation of the cathode. The target sample ({100} semiconductor Si) was contained within an exposed area of some 10 cm(2), upon which the effective pure B+ ion current was about 30 mA/cm 2 for a total effective B+ current of 300 mA. The 100% singly ionized B plasma contained virtually no non-boron ions, molecular radicals or neutral atoms. The arrangement was of the PIII type within the forward projecting plume, with bias of -500 V. The applied fluence was 3.5 x 10(17)/cm(2) divided on to two pulses of 1 s each. Analysis was primarily by RBS/ion channeling and by the B-11(p, alpha)Be-8 reaction. The retained dose was 6.1 x 10(16)/cm(2) or about 18% of the applied fluence. If sputter saturation is assumed, the implied sputter yield is 0.3, a value that agrees with the TRIM-calculated yield at saturation. Amorphization depth was 9.2 nm including the oxide and 8.4 nm if Si in the SiO2 is subtracted. Etching with HF reduced the retained B to 4.5 x 10(16)/cm(2). Macroparticle filtering was unsophisticated. Macroparticles adhering were 1500/cm(2) for this high applied dose. That value would scale to 1/cm(2) for an applied dose of 2 x 10(14)/cm(2). Expansion of the plume to larger areas and other parameter changes will allow adaptation of the technique to shallow junction and other p-doping. (c) 2005 Elsevier B.V. All rights reserved.
机译:已经通过使用B阴极电弧等离子体发生器将高通量的硼(B)离子注入到Si中。目的是证明用于B p掺杂的技术的可行性。纯固态B阴极在阴极电弧中的运行取决于用于阴极固结的专利技术。目标样品({100}半导体Si)包含在大约10 cm(2)的暴露区域内,其上有效纯B +离子电流约为30 mA / cm 2,总有效B +电流为300 mA。 100%的单电离B等离子体实际上不包含非硼离子,分子自由基或中性原子。该布置为正向突出羽流内的PIII类型,偏置为-500V。施加的注量为3.5 x 10(17)/ cm(2),分为两个每个1 s的脉冲。分析主要是通过RBS /离子通道和B-11(p,alpha)Be-8反应进行的。保留剂量为6.1 x 10(16)/ cm(2)或所施加注量的约18%。如果假设溅射饱和,则暗示的溅射良率为0.3,该值与TRIM计算的饱和良率相符。包括氧化物的非晶化深度为9.2nm,如果减去SiO 2中的Si,则非晶化深度为8.4nm。用HF蚀刻将保留的B降低到4.5 x 10(16)/ cm(2)。宏观过滤并不复杂。对于这种高应用剂量,粘附的大颗粒为1500 / cm(2)。对于2 x 10(14)/ cm(2)的剂量,该值将缩放为1 / cm(2)。将羽状流扩展到更大的区域以及其他参数变化将使该技术适用于浅结和其他p掺杂。 (c)2005 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号