...
首页> 外文期刊>The European Journal of Neuroscience >Analysis of distinct short and prolonged components in rebound spiking of deep cerebellar nucleus neurons.
【24h】

Analysis of distinct short and prolonged components in rebound spiking of deep cerebellar nucleus neurons.

机译:深部小脑核神经元反弹突波中不同的短时和长时成分的分析。

获取原文
获取原文并翻译 | 示例
           

摘要

Deep cerebellar nucleus (DCN) neurons show pronounced post-hyperpolarization rebound burst behavior, which may contribute significantly to responses to strong inhibitory inputs from cerebellar cortical Purkinje cells. Thus, rebound behavior could importantly shape the output from the cerebellum. We used whole-cell recordings in brain slices to characterize DCN rebound properties and their dependence on hyperpolarization duration and depth. We found that DCN rebounds showed distinct fast and prolonged components, with different stimulus dependence and different underlying currents. The initial depolarization leading into rebound spiking was carried by hyperpolarization-activated cyclic nucleotide-gated current, and variable expression of this current could lead to a control of rebound latency. The ensuing fast rebound burst was due to T-type calcium current, as previously described. It was highly variable between cells in strength, and could be expressed fully after short periods of hyperpolarization. In contrast, a subsequent prolonged rebound component required longer and deeper periods of hyperpolarization before it was fully established. We found using voltage-clamp and dynamic-clamp analyses that a slowly inactivating persistent sodium current fits the conductance underlying this prolonged rebound component, resulting in spike rate increases over several seconds. Overall, our results demonstrate that multiphasic DCN rebound properties could be elicited differentially by different levels of Purkinje cell activation, and thus create a rich repertoire of potential rebound dynamics in the cerebellar control of motor timing.
机译:小脑深核(DCN)神经元显示出明显的超极化后反弹爆发行为,这可能对小脑皮层Purkinje细胞对强抑制性输入的反应作出重大贡献。因此,反弹行为可以很重要地影响小脑的输出。我们使用脑切片中的全细胞记录来表征DCN反弹特性及其对超极化持续时间和深度的依赖性。我们发现DCN反弹显示出明显的快速和延长成分,具有不同的刺激依赖性和不同的潜在电流。超极化激活的环状核苷酸门控电流携带了导致去离子峰的初始去极化,并且该电流的可变表达可能导致对反弹潜伏期的控制。如前所述,随后的快速反弹爆发是由于T型钙电流引起的。细胞之间的强度差异很大,短时超极化后即可充分表达。相反,随后的长时间回弹分量在完全建立之前需要更长和更深的超极化时间。我们发现使用电压钳位和动态钳位分析发现,缓慢失活的持续钠电流与延长的回弹分量所对应的电导相符,导致峰值速率在几秒钟内增加。总体而言,我们的研究结果表明,不同水平的Purkinje细胞激活可不同地激发多相DCN反弹特性,从而在小脑控制运动时机中产生丰富的潜在反弹动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号