...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Solid State NMR Studies of the Molecular Motions in the Polycrystalline α-L-Fucopyranose and Methyl α-L-Fucopyranoside
【24h】

Solid State NMR Studies of the Molecular Motions in the Polycrystalline α-L-Fucopyranose and Methyl α-L-Fucopyranoside

机译:固态NMR研究多晶α-L-富精糖和甲基α-L-富精糖苷中分子运动

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular dynamics of polycrystalline α-L-fucopyranose and methyl α-L-fucopyranoside have been investigated using ~(13)C and ~1H spin relaxation times over a range of temperatures (90-400 K). For methyl α-L-fucopyranoside at 300 K, both methoxyl and methyl groups had much shorter ~(13)C T_1 than the carbons in the pyran ring. ~(13)C T_1 relaxation measurements (at 74.56 MHz) as a function of temperature enabled characterization of the 3-fold rotations of the methoxyl (E_a ~ 9 kJ/mol, τ_c ~ 0.7 * 10~(-13)s) and methyl (E_a ~ 9 kJ/mol, τ_c ~ 2 * 10~(-13)s) groups. Proton T_1(100 MHz) measurements of methyl α-L-fucopyranoside showed that the relaxation processes (E_a ~ 11 kJ/mol, τ_c ~ 0.7 * 10~(-13)s), corresponding to rotations of the methoxyl and methyl groups, are not distinguishable and occurred together at about 131 K. For α-L-fucopyranose, proton T_1 showed a relaxation rate maximum at 224 K, attributed to the 3-fold rotation of methyl group (E_a ~ 15 kJ/mol, τ_0 ~ 2.6 * 10~(-13)s). The rotation processes of the methyl groups dominated T_(1ρ) processes for both saccharides and appeared at the low-temperature end (90-150 K) of the temperature range. Contributions of hydroxyl groups to both T_1 and T_(1ρ) processes were obscured by the overwhelming relaxation efficiency of methyl groups. The proton second moment showed a reduction to a lower value at about 150 K due to the rotation of methyl groups.
机译:使用〜(13)C和〜1H自旋弛豫时间在一定温度范围(90-400 K)内研究了多晶α-L-呋喃二糖和甲基α-L-呋喃二糖苷的分子动力学。对于在300 K下的甲基α-L-呋喃果糖苷,甲氧基和甲基的〜(13)C T_1都比吡喃环中的碳短得多。 〜(13)C T_1弛豫测量值(在74.56 MHz处)是温度的函数,可表征甲氧基的3倍旋转(E_a〜9 kJ / mol,τ_c〜0.7 * 10〜(-13)s),并且甲基(E_a〜9 kJ / mol,τ_c〜2 * 10〜(-13)s)。甲基α-L-呋喃果糖苷的质子T_1(100 MHz)测量表明,弛豫过程(E_a〜11 kJ / mol,τ_c〜0.7 * 10〜(-13)s)对应于甲氧基和甲基的旋转,不能区分,大约在131 K时一起发生。对于α-L-富铀,质子T_1在224 K处显示最大弛豫速率,这归因于甲基的3倍旋转(E_a〜15 kJ / mol,τ_0〜2.6 * 10〜(-13)s)。甲基的旋转过程主导着两种糖的T_(1ρ)过程,并出现在温度范围的低温端(90-150 K)。甲基对弛豫效率的抑制作用掩盖了羟基对T_1和T_(1ρ)过程的贡献。由于甲基的旋转,质子的第二矩在约150 K处显示降低至较低的值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号