...
首页> 外文期刊>Classical and Quantum Gravity: An Interantional Journal of Gravity Geometry of Field Theories Supergravity Cosmology >High-frequency corrections to the detector response and their effect on searches for gravitational waves
【24h】

High-frequency corrections to the detector response and their effect on searches for gravitational waves

机译:探测器的高频校正及其对引力波搜索的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Searches for gravitational waves with km-scale laser interferometers often involve the long-wavelength approximation to describe the detector response. The prevailing assumption is that the corrections to the detector response due to its finite size are small and the errors due to the long-wavelength approximation are negligible. Recently, however, Baskaran and Grishchuk ( 2004 Class. Quantum Grav. 21 4041) found that in a simple Michelson interferometer such errors can be as large as 10%. For more accurate analysis, these authors proposed to use a linear-frequency correction to the long-wavelength approximation. In this paper we revisit these calculations. We show that the linear-frequency correction is inadequate for certain locations in the sky and therefore accurate analysis requires taking into account the exact formula, commonly derived from the photon round-trip propagation time. Also, we extend the calculations to include the effect of Fabry-Perot resonators in the interferometer arms. Here we show that a simple approximation which combines the long-wavelength Michelson response with the single-pole approximation to the Fabry-Perot transfer function produces rather accurate results. In particular, the difference between the exact and the approximate formulae is at most 2-3% for those locations in the sky where the detector response is greater than half of its maximum value. We analyse the impact of such errors on detection sensitivity and parameter estimation in searches for periodic gravitational waves emitted by a known pulsar, and in searches for an isotropic stochastic gravitational-wave background. At frequencies up to 1 kHz, the effect of such errors is at most 1-2%. For higher frequencies, or if more accuracy is required, one should use the exact formula for the detector response.
机译:用千米规模的激光干涉仪搜索引力波通常涉及长波近似来描述探测器的响应。普遍的假设是,由于检测器响应的有限大小而引起的校正很小,而由于长波长近似而产生的误差可以忽略不计。然而,最近,Baskaran和Grishchuk(2004年,量子引力21 4041级)发现,在简单的迈克尔逊干涉仪中,此类误差可能高达10%。为了进行更准确的分析,这些作者建议对长波长近似值使用线性频率校正。在本文中,我们将重新讨论这些计算。我们表明,线性频率校正不足以在天空中的某些位置进行,因此要进行准确的分析,必须考虑到通常由光子往返传播时间得出的精确公式。此外,我们扩展了计算范围,将法布里-珀罗谐振器的影响包括在干涉仪臂中。在这里,我们显示了将长波长迈克尔逊响应与对Fabry-Perot传递函数的单极点近似相结合的简单近似,可以得出相当准确的结果。特别是,对于天空中检测器响应大于其最大值一半的位置,精确公式与近似公式之间的差异最多为2-3%。我们在搜索由已知脉冲星发出的周期性引力波以及寻找各向同性随机引力波背景时,分析了此类误差对检测灵敏度和参数估计的影响。在高达1 kHz的频率下,此类误差的影响最多为1-2%。对于更高的频率,或者如果需要更高的精度,则应该使用精确的公式来表示检测器的响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号