首页> 外文期刊>Journal of Agronomy and Crop Science/Zeitschrift fur acker-und pflanzenbau >Effects of Free-Air Carbon Dioxide Enrichment on Sap Flow and Canopy Microclimate of Maize Grown under Different Water Supply
【24h】

Effects of Free-Air Carbon Dioxide Enrichment on Sap Flow and Canopy Microclimate of Maize Grown under Different Water Supply

机译:空气中CO2浓度升高对不同供水条件下玉米液流和冠层小气候的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

The rise of atmospheric CO2 concentration ([CO2]) affects stomatal conductance and thus transpiration and leaf temperature. We evaluated the effect of elevated [CO2] levels under different water supply on daily sap flow and canopy microclimate (air temperature (Tc) and vapour pressure deficit (VPD)) of maize. The crop was cultivated in circular field plots under ambient (AMB, 378mol mol(-1)) and elevated [CO2] (FACE, 550mol mol(-1)) using free-air CO2 enrichment with sufficient water in 2007, while in 2008 a DRY semicircle received only half as much water as compared to the WET semicircle from mid of July. In 2007, sap flow was measured in WET simultaneously under AMB and FACE conditions and was significantly decreased by elevated [CO2]. In 2008, sap flow was measured in all four treatments but not simultaneously. Therefore, data were correlated with potential evaporation and the slopes were used to determine treatment effects. Drought reduced whole-plant transpiration by 50% and 37% as compared to WET conditions under AMB and FACE, respectively. Moreover, CO2 enrichment did not affect sap flow under drought but decreased it under WET by 20% averaged over both years. The saving of water in the period before the drought treatment resulted in a displacement of dry soil conditions under FACE as compared to AMB. Under WET, CO2 enrichment always increased Tc and VPD during the day. Under DRY, FACE plots were warmer and drier most of the time in August, but cooler and damper short after the start of drought in July and from the end of August onwards. Thus, the CO2 effect on transpiration under drought was variable and detectable rather easy by measuring canopy microclimate.
机译:大气中CO2浓度([CO2])的升高会影响气孔导度,进而影响蒸腾作用和叶片温度。我们评估了在不同供水条件下升高的[CO2]水平对玉米日常树液流量和冠层微气候(气温(Tc)和蒸气压亏缺(VPD))的影响。在2007年(2008年)和2008年在大气(AMB,378mol mol(-1))和升高的[CO2](FACE,550mol mol(-1))的条件下,在圆形田地上种植该作物,并使用充足的水进行自由空气CO2富集。与7月中旬以来的WET半圆相比,一个DRY半圆仅收到一半的水。 2007年,在AMB和FACE条件下同时测量了WET中的汁液流量,并因[CO2]升高而大大降低了汁液流量。 2008年,在所有四种处理中均测量了液流,但并非同时进行。因此,数据与潜在的蒸发量相关,并且使用斜率确定治疗效果。与AMB和FACE下的WET条件相比,干旱使全植物蒸腾分别减少了50%和37%。此外,二氧化碳的富集并没有影响干旱条件下的汁液流动,但在湿润环境下,这两年的平均流量降低了20%。与AMB相比,干旱处理前的节水导致FACE下干旱土壤条件的置换。在WET下,白天的CO2富集总是增加Tc和VPD。在干旱下,8月份的大部分时间FACE地块都比较干燥,但是在7月开​​始干旱后以及8月底以后,天气变得凉爽而潮湿。因此,干旱条件下二氧化碳对蒸腾作用的影响是可变的,通过测量冠层微气候可以很容易地检测到。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号