...
首页> 外文期刊>Journal of Biomechanics >Biomechanical modelling of normal pressure hydrocephalus.
【24h】

Biomechanical modelling of normal pressure hydrocephalus.

机译:常压脑积水的生物力学建模。

获取原文
获取原文并翻译 | 示例
           

摘要

This study investigates the mechanics of normal pressure hydrocephalus (NPH) growth using a computational approach. We created a generic 3-D brain mesh of a healthy human brain and modelled the brain parenchyma as single phase and biphasic continuum. In our model, hyperelastic constitutive law and finite deformation theory described deformations within the brain parenchyma. We used a value of 155.77Pa for the shear modulus (mu) of the brain parenchyma. Additionally, in our model, contact boundary definitions constrained the brain outer surface inside the skull. We used transmantle pressure difference to load the model. Fully nonlinear, implicit finite element procedures in the time domain were used to obtain the deformations of the ventricles and the brain. To the best of our knowledge, this was the first 3-D, fully nonlinear model investigating NPH growth mechanics. Clinicians generally accept that at most 1mm of Hg transmantle pressure difference (133.416Pa) is associated with the condition of NPH. Our computations showed that transmantle pressure difference of 1mm of Hg (133.416Pa) did not produce NPH for either single phase or biphasic model of the brain parenchyma. A minimum transmantle pressure difference of 1.764mm of Hg (235.44Pa) was required to produce the clinical condition of NPH. This suggested that the hypothesis of a purely mechanical basis for NPH growth needs to be revised. We also showed that under equal transmantle pressure difference load, there were no significant differences between the computed ventricular volumes for biphasic and incompressibleearly incompressible single phase model of the brain parenchyma. As a result, there was no major advantage gained by using a biphasic model for the brain parenchyma. We propose that for modelling NPH, nearly incompressible single phase model of the brain parenchyma was adequate. Single phase treatment of the brain parenchyma simplified the mathematical description of the NPH model and resulted in significant reduction of computational time.
机译:本研究使用计算方法研究常压性脑积水(NPH)的生长机理。我们创建了一个健康的人脑的通用3-D脑网格,并将脑实质建模为单相和双相连续体。在我们的模型中,超弹性本构定律和有限变形理论描述了脑实质内的变形。我们使用155.77Pa的值作为脑实质的剪切模量(μ)。此外,在我们的模型中,接触边界定义限制了头骨内部的大脑外表面。我们使用跨幔压差加载模型。使用时域中的完全非线性隐式有限元程序来获取心室和大脑的变形。据我们所知,这是研究NPH生长机理的第一个3-D,完全非线性模型。临床医生通常接受最多1毫米汞柱的穿膜压差(133.416Pa)与NPH的状况有关。我们的计算表明,对于脑实质的单相或双相模型,跨膜压差1mm Hg(133.416Pa)均不会产生NPH。产生NPH的临床状况需要至少1.764mm Hg(235.44Pa)的跨膜压差。这表明需要修正NPH生长的纯机械基础的假设。我们还表明,在相等的跨膜压差负荷下,脑实质的双相和不可压/几乎不可压的单相模型的心室容积之间没有显着差异。结果,使用双相模型治疗脑实质并没有获得主要优势。我们建议,对于NPH建模,脑实质的几乎不可压缩的单相模型就足够了。脑实质的单相治疗简化了NPH模型的数学描述,并显着减少了计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号