...
首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Numerical simulations of frictional melting: Small dependence of shear stress drop on viscosity parameters
【24h】

Numerical simulations of frictional melting: Small dependence of shear stress drop on viscosity parameters

机译:摩擦熔化的数值模拟:剪切应力降对粘度参数的较小依赖性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Frictional melting during coseismic slipping strongly affects dynamic sliding. An idealized numerical simulation of shear stress drop due to lubrication of fault surfaces by frictional melting is performed to investigate dynamical adjustment of melt thickness and its dependence on material properties. We numerically solved one-dimensional heat conduction equations coupled with hydrodynamic equations of motion of the melt layer. We adopt a simple Arrhenius-type temperature dependence of melt viscosity with a parametric factor η0. After the initial transient stage, the evolution of the melt layer asymptotes to the late stage, where the melt thickness increases as and the generated shear stress drops as 1/. An analytic self-similar solution of the temperature profile for the late stage is obtained. The balance between the viscous heat generation and conductive heat loss characterizes the late stage. For small η0, the melt thickness is proportional to η0, whereas it will saturate for a larger η0. This is because the strong temperature dependence of viscosity enables an automatic adjustment of viscosity, which drops through the temperature increase due to the viscous heating even if a large η0 is chosen. Numerical results and the thickness data of natural pseudotachylyte layers were compared. A maximum ratio X/ (X is thickness, D is sliding distance) exists above which no solution is found. The effective thermal conductivity of the melt layer should be large, probably due to the sliding surface roughness. Comparison with laboratory experimental results showed that the normal stress applied to the sample is an important parameter for stress drop.
机译:同震滑动过程中的摩擦融化强烈影响动态滑动。为了研究熔体厚度的动态调节及其对材料性能的依赖性,对摩擦熔断层润滑引起的剪切应力降进行了理想的数值模拟。我们用数值方法求解了一维热传导方程,并结合了熔体运动的流体动力学方程。我们采用简单的Arrhenius型熔体粘度温度依赖性参数参数η0。在初始过渡阶段之后,熔体层逐渐消失,直到后期,熔体厚度随着增大而增大,所产生的剪切应力下降为1 /。获得了后期温度曲线的解析自相似解。粘性热产生和传导热损失之间的平衡是后期的特征。对于较小的η0,熔体厚度与η0成正比,而对于较大的η0,它会饱和。这是因为粘度的强温度依赖性使得粘度的自动调节成为可能,即使选择了较大的η0,由于粘性加热导致温度升高,粘度也会自动降低。比较了天然假速溶层的数值结果和厚度数据。存在最大比率X /(X是厚度,D是滑动距离),在该比率以上找不到解决方案。可能由于滑动表面的粗糙度,熔体层的有效导热系数应该很大。与实验室实验结果的比较表明,施加在样品上的正应力是应力下降的重要参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号