首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Combustion modeling and kinetic rate calculations for a stoichiometric cyclohexane flame. 1. Major reaction pathways
【24h】

Combustion modeling and kinetic rate calculations for a stoichiometric cyclohexane flame. 1. Major reaction pathways

机译:化学计量的环己烷火焰的燃烧建模和动力学速率计算。 1.主要反应途径

获取原文
获取原文并翻译 | 示例
           

摘要

The Utah Surrogate Mechanism was extended in order to model a stoichiometric premixed cyclohexane flame (P = 30 Torr). Generic rates were assigned to reaction classes of hydrogen abstraction, beta scission, and isomerization, and the resulting mechanism was found to be adequate in describing the combustion chemistry of cyclohexane. Satisfactory results were obtained in comparison with the experimental data of oxygen, major products and important intermediates, which include major soot precursors of C-2-C-5 unsaturated species. Measured concentrations of immediate products of fuel decomposition were also successfully reproduced. For example, the maximum concentrations of benzene and 1,3-butadiene, two major fuel decomposition products via competing pathways, were predicted within 10% of the measured values. Ring-opening reactions compete with those of cascading dehydrogenation for the decomposition of the conjugate cyclohexyl radical. The major ring-opening pathways produce 1-buten-4-yl radical, molecular ethylene, and 1,3-butadiene. The butadiene species is formed via beta scission after a 1-4 internal hydrogen migration of 1-hexen-6-yl radical. Cascading dehydrogenation also makes an important contribution to the fuel decomposition and provides the exclusive formation pathway of benzene. Benzene formation routes via combination of C-2-C-4 hydrocarbon fragments were found to be insignificant under current flame conditions, inferred by the later concentration peak of fulvene, in comparison with benzene, because the analogous species series for benzene formation via dehydrogenation was found to be precursors with regard to parent species of fulvene.
机译:为了模拟化学计量的预混合环己烷火焰(P = 30 Torr),扩展了犹他州替代机制。将通用速率分配给氢提取,β断裂和异构化的反应类别,并且发现所得机理足以描述环己烷的燃烧化学。与氧气,主要产品和重要中间体(包括C-2-C-5不饱和物质的主要烟灰前体)的实验数据相比,获得了满意的结果。燃料分解的直接产物的测量浓度也被成功地再现。例如,预测通过竞争途径的两种主要燃料分解产物苯和1,3-丁二烯的最大浓度在测量值的10%以内。开环反应与级联脱氢反应竞争共轭环己基自由基的分解。主要的开环途径产生1-丁烯-4-基,分子乙烯和1,3-丁二烯。丁二烯物质是在1-己烯基-6-基团的1-4内部氢迁移后通过β断裂形成的。级联脱氢也对燃料分解做出了重要贡献,并提供了苯的独家形成途径。发现在当前火焰条件下,通过C-2-C-4烃片段的结合而形成的苯与苯相比,是不重要的,由富勒烯的较晚浓度峰推断,与苯相比,是因为通过脱氢形成苯的类似物种系列是被发现是富勒烯母本的前体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号