首页> 外文期刊>Journal of Molecular Biology >Molecular determinants of antibiotic recognition and resistance by aminoglycoside phosphotransferase (3')-IIIa: a calorimetric and mutational analysis.
【24h】

Molecular determinants of antibiotic recognition and resistance by aminoglycoside phosphotransferase (3')-IIIa: a calorimetric and mutational analysis.

机译:氨基糖苷磷酸转移酶(3')-IIIa对抗生素识别和耐药的分子决定因素:量热和突变分析。

获取原文
获取原文并翻译 | 示例
           

摘要

The growing threat from the emergence of multidrug resistant pathogens highlights a critical need to expand our currently available arsenal of broad-spectrum antibiotics. In this connection, new antibiotics must be developed that exhibit the abilities to circumvent known resistance pathways. An important step toward achieving this goal is to define the key molecular interactions that govern antibiotic resistance. Here, we use site-specific mutagenesis, coupled with calorimetric, NMR, and enzymological techniques, to define the key interactions that govern the binding of the aminoglycoside antibiotics neomycin and kanamycin B to APH(3')-IIIa (an antibiotic phosphorylating enzyme that confers resistance). Our mutational analyses identify the D261, E262, and C-terminal F264 residues of the enzyme as being critical for recognition of the two drugs as well as for the manifestation of the resistance phenotype. In addition, the E160 residue is more important for recognition of kanamycin B than neomycin, with mutation of this residue partially restoring sensitivity to kanamycin B but not to neomycin. By contrast, the D193 residue partially restores sensitivity to neomycin but not to kanamycin B, with the origins of this differential effect being due to the importance of D193 for catalyzing the phosphorylation of neomycin. These collective mutational results, coupled with (15)N NMR-derived pK(a) and calorimetrically derived binding-linked drug protonation data, identify the 1-, 3-, and 2'-amino groups of both neomycin and kanamycin B as being critical functionalities for binding to APH(3')-IIIa. These drug amino functionalities represent potential sites of modification in the design of next-generation compounds that can overcome APH(3')-IIIa-induced resistance.
机译:来自多重耐药性病原体的威胁日益严重,这突出表明了扩大我们目前可用的广谱抗生素库的迫切需求。就此而言,必须开发出能够规避已知抗药性途径的新抗生素。实现这一目标的重要一步是定义控制抗生素抗性的关键分子相互作用。在这里,我们使用定点诱变,结合量热法,NMR和酶学技术,来定义控制氨基糖苷类抗生素新霉素和卡那霉素B与APH(3')-IIIa(一种抗生素磷酸化酶,赋予抵抗力)。我们的突变分析确定了酶的D261,E262和C端F264残基对于识别这两种药物以及表现出耐药性表型至关重要。此外,E160残基对卡那霉素B的识别比新霉素更重要,该残基的突变部分恢复了对卡那霉素B的敏感性,而不是对新霉素的敏感性。相比之下,D193残基部分恢复了对新霉素的敏感性,但不恢复对卡那霉素B的敏感性,这种差异作用的起因是由于D193对催化新霉素的磷酸化具有重要意义。这些集体的突变结果,加上(15)N NMR衍生的pK(a)和量热导出的结合连接的药物质子化数据,将新霉素和卡那霉素B的1-,3-和2'-氨基确定为与APH(3')-IIIa结合的关键功能。这些药物的氨基功能代表了潜在的修饰位点,可以克服APH(3')-IIIa诱导的耐药性的下一代化合物的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号