...
首页> 外文期刊>Physics of fluids >Design, modeling, and experimental validation of an acoustofluidic platform for nanoscale molecular synthesis and detection
【24h】

Design, modeling, and experimental validation of an acoustofluidic platform for nanoscale molecular synthesis and detection

机译:纳米级分子合成和检测的杂散流体平台的设计,建模和实验验证

获取原文
获取原文并翻译 | 示例
           

摘要

Microfluidic technologies are increasingly implemented to replace manual methods in biological and biochemical sample processing. We explore the feasibility of an acoustofluidic trap for confinement of microparticle reaction substrates against continuously flowing reagents in chemical synthesis and detection applications. Computational models are used to predict the flow and ultrasonic standing wave fields within two longitudinal standing bulk acoustic wave (LSBAW) microchannels operated in the 0.5-2.0 MHz range. Glass (gLSBAW) and silicon (siLSBAW) pillar arrays comprise trapping structures that augment the local acoustic field, while openings between pillars evenly distribute the flow for uniform exposure of substrates to reagents. Frequency spectra (acoustic energy density E-ac vs frequency) and model-predicted pressure fields are used to identify longitudinal resonances with pressure minima in bands oriented perpendicular to the inflow direction. Polymeric and glass particles (10- and 20-mu m diameter polystyrene beads, 6 mu m hollow glass spheres, and 5 mu m porous silica microparticles) are confined within acoustic traps operated at longitudinal first and second half-wavelength resonant frequencies (f(1,E) = 575 kHz, gLSBAW; f(1,E) = 666 kHz; and f(2,E) = 1.278 MHz, siLSBAW) as reagents are introduced at 5-10 mu l min(-1). Anisotropic silicon etched traps are found to improve augmentation of the acoustic pressure field without reducing the volumetric throughput. Finally, in-channel synthesis of a double-labeled antibody conjugate on ultrasound-confined porous silica microparticles demonstrates the feasibility of the LSBAW platform for synthesis and detection. The results provide a computational and experimental framework for continued advancement of the LSBAW platform for other synthetic processes and molecular detection applications.
机译:越来越多地实施微流体技术以取代生物和生化样品加工中的手动方法。我们探讨了声疏松疏水液捕集物的可行性,以便在化学合成和检测应用中对连续流动试剂进行微粒反应底物的限制。计算模型用于预测在0.5-2.0MHz范围内操作的两个纵向常设散装声波(LSBAW)微通道内的流动和超声波驻波场。玻璃(GLSBAW)和硅(Silsbaw)柱阵列包括增加局部声场的捕获结构,而柱之间的开口均匀地分配用于试剂的均匀暴露的流动。频谱(声学能量密度E-AC VS频率)和模型预测的压力场用于识别纵向谐振,其在垂直于流入方向定向的带中的压力最小值。聚合物和玻璃颗粒(10-和20-mu m直径聚苯乙烯珠,6μm中空玻璃球和5μm多孔二氧化硅微粒)在纵向第一和第二半波长谐振频率(F( 1,e)= 575 kHz,glsbaw; f(1,e)= 666 kHz;和F(2,e)= 1.278MHz,Silsbaw以5-10μmLmin(-1)引入试剂。发现各向异性硅蚀刻陷阱改善声压场的增强而不降低体积吞吐量。最后,在超声波限位多孔二孔微粒上的双标记抗体缀合物的沟道合成证明了LSBAW平台的合成和检测的可行性。结果提供了一种计算和实验框架,用于继续推进LSBAW平台,用于其他合成过程和分子检测应用。

著录项

  • 来源
    《Physics of fluids》 |2019年第8期|共11页
  • 作者单位

    Washington Univ St Louis Dept Mech Engn &

    Mat Sci St Louis MO 63130 USA;

    Washington Univ St Louis Dept Mech Engn &

    Mat Sci St Louis MO 63130 USA;

    Washington Univ St Louis Dept Mech Engn &

    Mat Sci St Louis MO 63130 USA;

    Washington Univ St Louis Dept Mech Engn &

    Mat Sci St Louis MO 63130 USA;

    Washington Univ Sch Med St Louis Dept Radiol St Louis MO 63110 USA;

    Washington Univ St Louis Dept Mech Engn &

    Mat Sci St Louis MO 63130 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 流体力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号