首页> 外文期刊>Physics of fluids >Interface-resolved numerical simulations of particle-laden turbulent channel flows with spanwise rotation
【24h】

Interface-resolved numerical simulations of particle-laden turbulent channel flows with spanwise rotation

机译:用枝条旋转的粒子载量湍流通道流动的接口解析数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Interface-resolved simulations of particle-laden turbulent channel flows with spanwise rotation at a Reynolds number of 180 and different rotation numbers ranging from 0.1 to 1.0 are performed with a fictitious domain method. The difficulty of the centrifugal force on the particles not satisfying the periodic boundary condition is circumvented by the feature of the fictitious domain formulation for the neutrally buoyant case, where the centrifugal force in the particle motion equation vanishes, and by only considering a low rotation number of 0.1 and setting the rotation center to be far away from the channel for the non-unity density ratio case. Our results show that the heavy particles (i.e., the particle density being larger than the fluid density) migrate towards the pressure wall, whereas the light particles migrate towards the suction wall. For the density ratio being unity, the particle concentration is higher near the pressure wall than near the suction wall, and we attribute the reason to the effects of the mean secondary flow structure (i.e., the Taylor-Gortler vortices), since similar particle concentration distribution and secondary flow structure are observed in a rotating laminar channel flow. The mean velocities of heavy particles are smaller in the pressure-side half channel except the near-wall region, and larger in the suction-side half channel, compared to the fluid mean velocity; the opposite occurs for the light particle case. The addition of the finite-size particles increases the flow drag. The flow drag is not sensitive to the density ratio for the light particles and increases with increasing density ratio for the heavy particles. The effects of the particles on the fluid root-mean-square velocities of the rotating turbulent channel flow are generally similar to the non-rotating channel case, but become more complicated because of the asymmetric turbulence intensity and particle concentration distribution near two walls caused by the channel rotation. Published under license by AIP Publishing.
机译:含颗粒的湍流信道的接口分辨模拟在180张不同的旋转数为0.1至1.0与一个虚拟区域方法进行的雷诺数翼展方向转动流动。上未满足的周期性边界条件的颗粒上的离心力的困难是由虚拟区域制剂为中性浮力的情况下,其中该质点运动方程中的离心力消失的特征绕过,并且通过仅考虑低旋转数的0.1和设置旋转中心到远离的非单位密度比的情况下的信道。我们的结果表明,该重粒子(即,粒子密度比流体密度更大)朝向压力壁迁移,而轻粒子朝向抽吸壁迁移。对于密度比为统一,粒子浓度附近的压力壁比抽吸壁附近更高,而我们的属性的原因,以平均二次流结构的效果(即,泰勒-görtler涡旋)中,由于类似的颗粒浓度分布和二次流结构在旋转的层信道流中观察到。重粒子的平均速度在吸入侧半信道,相比于流体的平均速度,除了近壁区域中的压力侧半通道小,大;出现相反的光粒子的情况。在加入有限尺寸的颗粒的增加的流动阻力。流动阻力是不为光颗粒和增大随密度比为重颗粒的密度比是敏感的。粒子在流体根均方速度旋转槽道湍流的效果大体上类似于非旋转信道的情况下,但变得更复杂,因为附近引起两个壁不对称湍流强度和颗粒浓度分布的通道旋转。通过AIP发布在许可证下发布。

著录项

  • 来源
    《Physics of fluids》 |2020年第1期|共15页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 流体力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号