首页> 外文期刊>RSC Advances >Impedimetric detection of pathogenic bacteria with bacteriophages using gold nanorod deposited graphite electrodes
【24h】

Impedimetric detection of pathogenic bacteria with bacteriophages using gold nanorod deposited graphite electrodes

机译:使用金纳米棒沉积的石墨电极用噬菌体阻碍致病菌的致病菌检测

获取原文
获取原文并翻译 | 示例
           

摘要

Electrochemical impedance spectroscopy (EIS) is applied for the detection of bacteria using bacteriophages as a bioprobe together with gold nanorods (GNRs). Escherichia coli - E. coli K12 was used as a model target bacteria and also for the propagation of its specific T4-phages. Gold nanorods (GNRs) were synthesized via a two-step protocol and characterized using different techniques. EIS measurements were conducted in an electrochemical cell consisting of a three electrode system. Single-use pencil graphite electrodes (PGE) were modified by the physical adsorption of GNRs to increase their interfacial conductivity and therefore sensitivity for impedimetric measurements. Therefore, interfacial charge-transfer resistance values (R-ct) sharply decreased after GNRs deposition. Phages were adsorbed on these electrodes via a simple incubation protocol at room temperature, which resulted in an increase in R-ct values, which was concluded to be as a result of nonconductive phage layers. These phage-carrying GNRs-PGEs were used for impedimetric detection of the target bacteria, E. coli. Significant increases at the R-ct values were observed which were attributed to the insulation effects of the adsorbed bacterial layers. This increase was even more when the bacterial concentrations were higher. In the case of the non-target bacteria Staphylococcus aureus (S. aureus), conductivity noticeable decreases (due to nonspecific adsorption). However, in the case of E. coli, the R-ct value increase is time dependent and reaches maximum in about 25-30 min, then decreases gradually as a result of bacterial lysis due to phage invasion on the electrode surfaces. In contrast, there were no time dependent changes with the non-target bacteria S. aureus (no infection and no lytic activity). It is concluded that the target bacteria could be detected using this very simple and inexpensive detection protocol with a minimum detection limit of 10(3) CFU mL(-1) in approximately 100 mu L bacterial suspension.
机译:电化学阻抗光谱(EIS)用于使用噬菌体作为生物探针与金纳米棒(GNRS)一起检测细菌的检测。大肠杆菌Coli - 大肠杆菌K12用作模型靶细菌,也用于其特异性T4噬菌体的繁殖。通过两步方案合成金纳米棒(GNR)并使用不同的技术来表征。 EIS测量在由三个电极系统组成的电化学电池中进行。通过GNR的物理吸附来改变一次性铅笔石墨电极(PGE)以增加其界面导电性,因此改变其对阻碍测量的敏感性。因此,在GNR沉积后,界面电荷转移电阻值(R-CT)急剧下降。通过室温的简单培养方案在这些电极上吸附在这些电极上,这导致R-CT值的增加,这被判断为不导电噬菌体层的结果。这些携带的GnRS倾斜术用于阻抗检测靶细菌,大肠杆菌。观察到R-CT值的显着增加,其归因于吸附的细菌层的绝缘效应。当细菌浓度较高时,这种增加更多。在非靶细菌金黄色葡萄球菌(金黄色葡萄球菌)的情况下,导电性显着降低(由于非特异性吸附)。然而,在大肠杆菌的情况下,R-CT值增加是时间依赖性并且在大约25-30分钟内最大达到最大,然后由于电极表面上的噬菌体侵袭而导致的细菌裂解逐渐降低。相比之下,没有时间依赖性变化与非靶细菌的金黄色葡萄球菌(没有感染和没有裂解活动)。得出结论,可以使用该非常简单且廉价的检测方案检测目标细菌,其中最小检测限为10(3)个CFU mL(-1)的最小检测限,在约100μl细菌悬浮液中。

著录项

  • 来源
    《RSC Advances》 |2016年第100期|共8页
  • 作者单位

    Hacettepe Univ Fac Engn Dept Chem Engn Grad Sch Sci &

    Engn Nanotechnol &

    Nanomed Div TR-06800 Ankara Turkey;

    Ege Univ Fac Pharm Dept Analyt Chem TR-35100 Izmir Turkey;

    Izmir Inst Technol Dept Mat Sci &

    Engn TR-35430 Izmir Turkey;

    Ege Univ Fac Pharm Dept Analyt Chem TR-35100 Izmir Turkey;

    Hacettepe Univ Fac Engn Dept Chem Engn Grad Sch Sci &

    Engn Nanotechnol &

    Nanomed Div TR-06800 Ankara Turkey;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号