首页> 外文期刊>Acta biomaterialia >Acceleration of chondrogenic differentiation of human mesenchymal stem cells by sustained growth factor release in 3D graphene oxide incorporated hydrogels
【24h】

Acceleration of chondrogenic differentiation of human mesenchymal stem cells by sustained growth factor release in 3D graphene oxide incorporated hydrogels

机译:通过持续生长因子释放在3D石墨烯掺入水凝胶中的持续生长因子释放的加速增长

获取原文
获取原文并翻译 | 示例
           

摘要

Damaged articular cartilage has limited self-healing capabilities, leading to degeneration that affects millions of people. Although cartilage tissue engineering is considered a promising approach for treatment, robust and long-term chondrogenesis within a 3-dimensional (3D) scaffold remains a major challenge for complete regeneration. Most current approaches involve incorporation of transforming growth factor-beta (TGF-beta) into the scaffold, but have limited utility owing to the short functional half-life and/or rapid clearance of TGF-beta. In this study, we have tested the incorporation of graphene oxide nanosheets (GO) within a photopolymerizable poly-D, L-lactic acid/polyethylene glycol (PDLLA) hydrogel, for its applicability in sustained release of the chondroinductive growth factor TGF-beta 3. We found that with GO incorporation, the hydrogel scaffold (GO/PDLLA) exhibited enhanced initial mechanical strength, i.e., increased compressive modulus, and supported long-term, sustained release of TGF-beta 3 for up to 4 weeks. In addition, human bone marrow-derived mesenchymal stem cells (hBMSCs) seeded within TGF-beta 3 loaded GO/PDLLA hydrogels displayed high cell viability and improved chondrogenesis in a TGF-beta 3 concentration-dependent manner. hBMSCs cultured in GO/PDLLA also demonstrated significantly higher chondrogenic gene expression, including aggrecan, collagen type II and SOX9, and cartilage matrix production when compared to cultures maintained in GO-free scaffolds containing equivalent amounts of TGF-beta 3. Upon subcutaneous implantation in vivo, hBMSC-seeded TGF-beta 3-GO/PDLLA hydrogel constructs displayed considerably greater cartilage matrix than their TGF-beta 3/PDLLA counterparts without GO. Taken together, these findings support the potential application of GO in optimizing TGF-beta 3 induced hBMSC chondrogenesis for cartilage tissue engineering.
机译:受损关节软骨具有有限的自我修复能力,导致退化影响数百万人。尽管软骨组织工程被认为是一种有希望的治疗方法,但在三维(3D)支架内的稳健和长期软骨发生仍然是完全再生的主要挑战。大多数电流方法涉及将生长因子-β(TGF-β)掺入支架中,而是由于TGF-β的短函数半衰期和/或快速清除而具有有限的效用。在该研究中,我们已经测试了在可光聚合的Poly-D,L-乳酸/聚乙二醇(PDLLA)水凝胶内的石墨烯纳米片(GO)的掺入,以其适用于软骨胁迫生长因子TGF-β3的适用性。我们发现,通过GO掺入,水凝胶支架(GO / PDLLA)表现出增强的初始机械强度,即增加的压缩模量,并支持长期,持续释放TGF-β3长达4周。此外,在TGF-β3加载的GO / PDLLA水凝胶中播种的人骨髓衍生的间充质干细胞(HBMSCs)显示出高细胞活力并以TGF-β3浓度依赖性方式改进的软骨发生。在Go / PDLLA中培养的HBMSCs还表现出显着更高的软骨内基因表达,包括蛋白,胶原蛋白II型和SOX9,以及与维持在含有当量量的TGF-β3的无可去支架3中的培养物相比的软骨基质产生。在皮下植入时体内,HBMSC接种的TGF-β3-GO / PDLLA水凝胶构建体显示出比其TGF-β3/ PDLLA对应物的显着更大的软骨基质,而没有去。总之,这些发现支持在优化TGF-Beta 3诱导的软骨组织工程中诱导HBMSC软骨发生的潜在应用。

著录项

  • 来源
    《Acta biomaterialia》 |2020年第2020期|共12页
  • 作者单位

    Chinese Acad Sci Suzhou Inst Nanotech &

    Nanobion Div Nanobiomed Key Lab Nanobio Interface;

    Univ Pittsburgh Sch Med Dept Orthopaed Surg Ctr Cellular &

    Mol Engn Pittsburgh PA 15219 USA;

    Univ Pittsburgh Sch Med Dept Orthopaed Surg Ctr Cellular &

    Mol Engn Pittsburgh PA 15219 USA;

    Chinese Acad Sci Suzhou Inst Nanotech &

    Nanobion Div Nanobiomed Key Lab Nanobio Interface;

    Univ Pittsburgh Sch Med Dept Orthopaed Surg Ctr Cellular &

    Mol Engn Pittsburgh PA 15219 USA;

    Univ Pittsburgh Sch Med Dept Orthopaed Surg Ctr Cellular &

    Mol Engn Pittsburgh PA 15219 USA;

    Chinese Acad Sci Suzhou Inst Nanotech &

    Nanobion Div Nanobiomed Key Lab Nanobio Interface;

    Univ Pittsburgh Sch Med Dept Orthopaed Surg Ctr Cellular &

    Mol Engn Pittsburgh PA 15219 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 普通生物学;
  • 关键词

    Graphene oxide; Transforming growth factor; Cartilage regeneration; Mesenchymal stem cells; Sustained release;

    机译:石墨烯氧化物;转化生长因子;软骨再生;间充质干细胞;持续释放;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号