首页> 外文期刊>Cryogenics >Validation of two-phase CFD models for propellant tank self-pressurization: Crossing fluid types, scales, and gravity levels
【24h】

Validation of two-phase CFD models for propellant tank self-pressurization: Crossing fluid types, scales, and gravity levels

机译:用于推进剂罐自加压的两相CFD模型的验证:穿越流体类型,鳞片和重力水平

获取原文
获取原文并翻译 | 示例
           

摘要

This paper examines our computational ability to capture the transport and phase change phenomena that govern cryogenic storage tank pressurization and underscores our strengths and weaknesses in this area in terms of three computational-experimental validation case studies. In the first study, 1g pressurization of a simulant low-boiling point fluid in a small scale transparent tank is considered in the context of the Zero-Boil-Off Tank (ZBOT) Experiment to showcase the relatively strong capability that we have developed in modelling the coupling between the convective transport and stratification in the bulk phases with the interfacial evaporative and condensing heat and mass transfer that ultimately control self-pressurization in the storage tank. Here, we show that computational predictions exhibit excellent temporal and spatial fidelity under the moderate Ra number – high Bo number convective-phase distribution regimes. In the second example, we focus on 1g pressurization and pressure control of the large-scale K-site liquid hydrogen tank experiment where we show that by crossing fluid types and physical scales, we enter into high Bo number – high Ra number flow regimes that challenge our ability to predict turbulent heat and mass transfer and their impact on the tank pressurization correctly, especially, in the vapor domain. In the final example, we examine pressurization results from the small scale simulant fluid Tank Pressure Control Experiment (TCPE) performed in microgravity to underscore the fact that in crossing into a low Ra number – low Bo number regime in microgravity, the temporal evolution of the phase front as affected by the time-dependent residual gravity and impulse accelerations becomes an important consideration. In this case detailed acceleration data are needed to predict the correct rate of tank self-pressurization.
机译:本文探讨了我们捕获运输和相变现象的计算能力,该现象控制低温储罐加压,并在三个计算实验验证案例研究方面,在该地区的优势和弱点下降。在第一研究中,在零蒸煮罐(ZBOT)实验的上下文中考虑了在小型透明罐中的模拟透明罐中的模拟低沸点流体的1G加压,以展示我们在建模中开发的相对强的能力具有界面蒸发和冷凝热和传质的对流传输和分层之间的耦合,最终控制储罐中自加中的自压制化。在这里,我们表明计算预测在中等RA数 - 高博编号对流阶段分布方案下表现出优异的时间和空间保真度。在第二个例子中,我们专注于大规模k位液体氢气罐实验的1g加压和压力控制,在那里我们表明通过穿越流体类型和物理尺度,我们进入高博号 - 高RA数流量制度挑战我们在蒸汽结构域中正确地预测湍流热量和质量传递及其对罐加压的影响。在最后的例子中,我们研究了小规模模拟流体罐压力控制实验(TCPE)的加压结果,在微匍匐地下进行,强调了在微匍匐中交叉进入低RA数 - 低博号制度的事实,是受时间依赖性残留重力和脉冲加速度影响的相位前沿成为一个重要的考虑因素。在这种情况下,需要详细的加速数据来预测罐自加压的正确速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号