...
首页> 外文期刊>Smart Materials & Structures >Clip-brazing for the design and fabrication of micronewton-resolution millimeter-scale force sensors
【24h】

Clip-brazing for the design and fabrication of micronewton-resolution millimeter-scale force sensors

机译:剪辑钎焊米尔修道分辨率毫米力传感器的设计和制造

获取原文
获取原文并翻译 | 示例
           

摘要

We present clip-brazing as a new method to construct millimeter-to-centimeter-scale metal structures with micron-scale precision that is fast, scalable and extremely low-cost. Small structures with demanding requirements on both dimensional tolerances and dynamic force responses to time-varying loads are difficult to fabricate and expensive to iteratively prototype. The technique introduced here enables precise placement of strong metallic brazed bonds to create 3D structures with micrometric accuracy, which in this work is exemplified through the design and construction of a broadband micronewton-resolution force-sensing device. The fabrication method uses tensioned clips made from a silver brazing alloy wire to accurately place and control the volume of the metal that joins and supports the pieces that compose the microstructures. The use of clips also allows the simultaneous fusion of all the connections in the structure during a single heating sequence, reducing tolerance stack-up. To analyze the quality and strength of the brazes, we employed scanning electron microscopy (SEM) on cross-sections and tensile testing on dogbone-shaped sample pieces, respectively. After proper calibration, the functionality of the constructed micro-force-sensing system was analyzed and demonstrated using constant a priori known weights and the vertical periodic forces produced by an 83 mg flapping-wing microrobot (including a 3 mg attachment truss). The static tests, in combination with solid-mechanics analyses and simulations based on finite-element analysis (FEA), provide compelling evidence of the high accuracy and precision of the force sensing system for frequencies below 167.5 Hz. Furthermore, the shape characteristics and average values of the measured periodic signals are compared to computational fluid dynamics (CFD) simulations and validated for two sets of flapping angles across the frequency range from 55 to 100 Hz. These results validate the proposed approach as a viable tool for microrobotic design and fabrication.
机译:我们将剪辑钎焊作为一种新方法,以用微米级精度构建毫米至厘米级金属结构,可快速,可扩展和极低成本。对于尺寸公差和动态力响应对时变负载的苛刻要求的小结构难以制造和昂贵的原型难以制造和昂贵。介绍的技术能够精确地放置强金属钎焊键,以产生微米精度的3D结构,这在该工作中通过设计和构造宽带微针破裂力传感装置的设计和构造。制造方法使用由银钎焊合金线制成的张紧夹子来精确放置和控制连接和支撑构成微结构的件的金属的体积。夹子的使用还允许在单个加热序列期间同时融合结构中的所有连接,减少公差堆叠。为了分析钎焊的质量和强度,我们将在横截面上使用扫描电子显微镜(SEM)和狗耳形样品件上的拉伸试验。经过适当的校准后,使用恒定的已知权重和由83mg扑翼微机器(包括3mg附接桁架)产生的垂直周期力来分析和说明构造的微力传感系统的功能。静态测试与基于有限元分析(FEA)的固态分析和仿真组合,提供了令人信服的证据证明,用于低于167.5Hz的频率的力传感系统的高精度和精度。此外,将测量的周期信号的形状特性和平均值与计算流体动力学(CFD)模拟进行比较,并且验证跨越55到100Hz的两组频率范围。这些结果验证了所提出的方法作为微生物设计和制造的可行工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号