首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption
【24h】

Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption

机译:蜡般的等级Ni @ C微球,具有高性能微波吸收

获取原文
获取原文并翻译 | 示例
           

摘要

The rational design of the microstructure of magnetic carbon-based composites has become a popular strategy to enhance their microwave absorption properties. Herein, with Ni-containing metal-organic framework as the self-sacrificing precursor, we have successfully prepared waxberry-like Ni@C microspheres as novel microwave absorbing materials, which artfully integrated the advantages of core-shell configuration and hierarchical architecture. The effects of the pyrolysis temperature on the microstruture, carbon content, relative graphitization degree, magnetic properties, and electromagnetic parameters were carefully investigated. The composite that was pyrolyzed at 700 degrees C (Ni@C-700) exhibited desirable microwave absorption performance, including a strong reflection loss intensity of -73.2 dB and a broad qualified bandwidth of 4.8 GHz with an applied thickness of 1.8 mm. The electromagnetic analysis revealed that such good performance of Ni@C-700 was benefited from both the well-matched impedance and decent attenuation ability. The superiority of this unique microstruture was also validated by comparing it with some homologous composites and isolated core-shell Ni@C nanoparticles. It is believed that these results may provide a new pathway to promote the electromagnetic applications of conventional magnetic carbon-based composites by optimizing their microstructure.
机译:磁性碳基复合材料的微观结构的合理设计已成为增强其微波吸收特性的流行策略。这里,通过含Ni的金属 - 有机骨架作为自死前体,我们已经成功地制备了像新型微波吸收材料的蜡树状Ni @ C微球,其巧妙地整合了核心 - 壳体配置和分层架构的优点。仔细研究了热解温度对微血管,碳含量,相对石墨化程度,磁性和电磁参数的影响。在700摄氏度(Ni @ C-700)下热解的复合材料表现出理想的微波吸收性能,包括-73.2dB的强反射损耗强度,并且具有1.8mm的施加厚度为4.8GHz的广泛合格带宽。电磁分析显示,Ni @ C-700的这种良好性能受益于匹配的阻抗和体面的衰减能力。通过将其与一些同源复合材料和分离的核心壳Ni @ C纳米颗粒进行比较,还经过验证这种独特的微带化的优越性。据信这些结果可以通过优化它们的微观结构来促进常规磁性碳基复合材料的电磁应用来提供新的途径。

著录项

  • 来源
  • 作者单位

    Harbin Inst Technol Sch Chem &

    Chem Engn MIIT Key Lab Crit Mat Technol New Energy Convers Harbin 150001 Heilongjiang Peoples R China;

    Harbin Inst Technol Sch Chem &

    Chem Engn MIIT Key Lab Crit Mat Technol New Energy Convers Harbin 150001 Heilongjiang Peoples R China;

    Harbin Inst Technol Sch Chem &

    Chem Engn MIIT Key Lab Crit Mat Technol New Energy Convers Harbin 150001 Heilongjiang Peoples R China;

    Army Logist Univ PLA Dept Mil Installat Chongqing 401331 Peoples R China;

    Harbin Inst Technol Sch Chem &

    Chem Engn MIIT Key Lab Crit Mat Technol New Energy Convers Harbin 150001 Heilongjiang Peoples R China;

    Harbin Inst Technol Sch Chem &

    Chem Engn MIIT Key Lab Crit Mat Technol New Energy Convers Harbin 150001 Heilongjiang Peoples R China;

    Harbin Inst Technol Sch Chem &

    Chem Engn MIIT Key Lab Crit Mat Technol New Energy Convers Harbin 150001 Heilongjiang Peoples R China;

    Harbin Inst Technol Sch Chem &

    Chem Engn MIIT Key Lab Crit Mat Technol New Energy Convers Harbin 150001 Heilongjiang Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号