首页> 外文期刊>Journal of the mechanical behavior of biomedical materials >Micro-CT based finite element modelling and experimental characterization of the compressive mechanical properties of 3-D zirconia scaffolds for bone tissue engineering
【24h】

Micro-CT based finite element modelling and experimental characterization of the compressive mechanical properties of 3-D zirconia scaffolds for bone tissue engineering

机译:基于微型CT的骨组织工程三维氧化锆支架压缩力学性能的有限元模拟及实验表征

获取原文
获取原文并翻译 | 示例
           

摘要

The present study aims at developing a computational framework with experimental validation to determine the mechanical properties of zirconia foams for bone tissue engineering. A micro-CT based finite element model that allows characterizing the mechanical property of such cellular structures is developed. Micro-CT images are filtered to vanish noises and smooth boundaries before constructing 3D zirconia foams using an adaptive BodyCentered Cubic background lattice. In addition to micro-CT images, the local material property at the scaffold struts is measured using a micro-indentation test, which shows a considerable difference with that of common zirconia owing to the manufacturing process. The computational model also takes the plastic deformation of material into account employing the Voce law, a nonlinear isotropic hardening law, as well as Von-mises yield criterion. Zirconia foams with different pore sizes are manufactured using the replica method and their mechanical properties determined experimentally. Such experimental outcomes are to validate and demonstrate the capability of the developed model, which can be used for pre-operational evaluations and preclinical tests of zirconia scaffolds. The stress magnitude and distribution within the scaffold as well as plastic strains and flow stress of the zirconia scaffold are computed and analysed. Using the proposed approach, a deep insight into the association of macroscopic behaviour of the scaffold to microscopic features, e.g. strut waviness, Plateau border, thickness variation of cells, irregularity, microstructural variability, imperfections and strut's material property associated with to the manufacturing procedure, can be gained.
机译:本研究旨在开发具有实验验证的计算框架,以确定骨组织工程氧化锆泡沫的机械性能。开发了一种基于微型CT的有限元模型,其允许表征这种蜂窝结构的机械性质。在使用自适应体型立方体背景格子构建3D氧化锆泡沫之前,将微CT图像过滤以消失噪声和平滑的边界。除了微CT图像之外,使用微压痕试验来测量支架支柱处的局部材料性能,所述微压痕试验显示由于制造过程而言,其显示出与常见氧化锆的差异相当差异。计算模型还考虑了使用voce法,非线性各向同性硬化法以及von-mises屈服标准的塑性变形。使用复制品方法制造具有不同孔径的氧化锆泡沫,并通过实验确定它们的机械性能。这种实验结果是验证和展示开发模型的能力,可用于氧化锆支架的预运算评估和临床前测试。计算和分析了支架内的应力幅度和分布以及氧化锆支架的塑料菌株和流量应力。利用所提出的方法,深入了解支架对微观特征的宏观行为的关系,例如。可以获得支柱波纹,高原边界,细胞的厚度变化,不规则,微观结构可变性,缺陷和与制造程序相关的材料的材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号