首页> 外文期刊>American Zoologist >Vibration as a communication channel: A synopsis
【24h】

Vibration as a communication channel: A synopsis

机译:振动作为沟通渠道:简介

获取原文
获取原文并翻译 | 示例
           

摘要

The sensitivity of animals to low-frequency vibrations (Hadley and Williams, 1968; Dorward and Mclntyre, 1971; Hartline, 1971; Salmon and Horch, 1972) and their ability to produce vibrations in the substrate (Pearman, 1928; Emerson and Simpson, 1929; Haskell, 1955; Sismondo, 1980; Uetz and Stratton, 1982) have been recognized for some time. Yet, the analyses required to determine the biological usefulness of an ability to produce or detect vibration are still rare (Ewing, 1989). Merely being species-specific and stereotypical does not make an event a signal (Doherty and Gerhardt, 1984; Bradbury and Vehrencamp, 1998). Activities of animals set up airborne sound and substrate-borne vibration simultaneously (Gogala, 1985), but whether or not these are true signals depends on the environment and adaptations of animals to communication in that environment (Keuper et al., 1985). Logical arguments once suggested that physical limitations on communication via the substrate were severe (Schwartzkopff, 1974). In fact, when Brownell first described detection of Rayleigh waves by foraging sand scorpions in 1977, he expressed the conventional wisdom: "Natural solids are not considered important avenues of information transfer, since they are generally heterogeneous and inelastic, or the conduction velocity and wavelength of the signals they conduct are too large to convey biologically useful information other than to warn of a disturbing force nearby" (Brownell, 1977, p. 479). Yet, when he continued to question, he found that the nocturnal scorpion, Paruroctonus mesaensis, can interpret vibrations in sand to determine both direction and distance of prey species and that conduction velocities are actually much lower than had been assumed (Brownell, 1977, 1984). The scorpion does rather better in extracting information from vibrations in sand than preying-mantids and jumping spiders on land and water striders on the water surface (Brownell and Farley, 1979b). More recent investigations by Cocroft et al. (2000) have suggested that a vibration localization mechanism can function at even the smallest spatial scales in arthropods. Thus, as in most things, the more we search, the more we find. Animals, after all, in the world according to Barth, "... look at the world through windows that may differ drastically from our own" (1998, p. 228).
机译:动物对低频振动的敏感性(Hadley和Williams,1968; Dorward和Mclntyre,1971; Hartline,1971; Salmon和Horch,1972)及其在基质中产生振动的能力(Pearman,1928; Emerson和Simpson, 1929年; Haskell,1955年; Sismondo,1980年; Uetz和Stratton,1982年)已经被认可了一段时间。然而,确定产生或检测振动的能力的生物学实用性所需的分析仍然很少(Ewing,1989)。仅是特定于物种和定型观念并不能使事件成为信号(Doherty和Gerhardt,1984; Bradbury和Vehrencamp,1998)。动物的活动同时建立了空气传播的声音和基质传播的振动(Gogala,1985),但是这些信号是否是真实信号取决于环境以及动物在该环境中适应交流的能力(Keuper等,1985)。逻辑论点曾经表明,通过底物进行通讯的物理限制很严重(Schwartzkopff,1974)。实际上,当布朗内尔(Brownell)于1977年首次描述了通过觅食蝎子探测瑞利波时,他表达了传统的常识:“天然固体不被认为是信息传输的重要途径,因为它们通常是非均质且无弹性的,或者是传导速度和波长它们传导的信号太大,无法传递生物学上有用的信息,而不能警告附近有干扰力”(Brownell,1977,第479页)。然而,当他继续质疑时,他发现夜间蝎子Paruroctonus mesaensis可以解释沙中的振动以确定猎物的方向和距离,并且传导速度实际上比假定的要低得多(Brownell,1977,1984)。 )。蝎子在捕食沙尘中的信息比捕食螳螂和在水面上的陆地和水str上跳跃的蜘蛛要好得多(Brownell和Farley,1979b)。 Cocroft等人最近的研究。 (2000)提出,振动定位机制甚至可以在节肢动物的最小空间尺度上发挥作用。因此,就像在大多数情况下一样,我们搜索的越多,我们找到的越多。毕竟,根据Barth的说法,动物是“……通过可能与我们自己的窗户截然不同的窗户观察世界”(1998年,第228页)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号