首页> 外文期刊>Chemical Engineering Science >Mesoscale modeling of emulsification in rotor-stator devices Part II: A model framework integrating emulsifier adsorption
【24h】

Mesoscale modeling of emulsification in rotor-stator devices Part II: A model framework integrating emulsifier adsorption

机译:转子定子器件乳化的Messcale建模部分II部分:集成乳化剂吸附的模型框架

获取原文
获取原文并翻译 | 示例
           

摘要

Precise and rational control of droplet size distribution (DSD) is important in emulsification for target-oriented product design. To develop a complete DSD model, crossing the two mesoscales of two different levels is of great significance, viz., the emulsifier adsorption at interfacial level (Mesoscale 1) and the droplet breakage and coalescence in turbulence in rotor-stator device level (Mesoscale 2). While the first mesoscale can be simulated by coarse-grained molecular dynamic (CGMD), the second has been investigated in computational fluid dynamics and population balance model (CFD-PBM) simulation through the Energy-Minimization Multi-Scale (EMMS) approach in Part I. We then developed a model framework in Part II, coupling CGMD and CFD-PBM simulation through surfactant transport equations in bulk phase and at interface, with source terms taking account of emulsifier adsorption parameters. The parameters including maximal adsorption amount, diffusion coefficient and adsorption/desorption kinetic constants are acquired from CGMD. The coalescence efficiency is then corrected by the interfacial area fraction not occupied by surfactant and fed into the coalescence kernel functions in PBM. Compared to traditional CFD-PBM simulation, the coupled model can greatly improve the simulation of DSD, Sauter mean diameter, median diameter and span for high dispersed phase amount (DPA), and correctly reflect the influence of DPA, surfactant concentration and rotational speed of rotor-stator (RS) devices. While the simulation cases validate and demonstrate the advantage of this new model framework, it is also promising to incorporate different types of surfactant in future. (C) 2018 Elsevier Ltd. All rights reserved.
机译:液滴尺寸分布(DSD)的精确和合理控制对于目标导向产品设计的乳化是重要的。为了开发一个完整的DSD模型,穿过两种不同水平的两个媒介级别具有重要意义,即界面水平(Mesoscale 1)的乳化剂吸附以及转子定子装置等级中的湍流中的液滴断裂和聚结(Mesoscale 2 )。虽然可以通过粗粒化分子动态(CGMD)模拟第一阶段性,但是通过能量最小化多尺度(EMM)方法在计算流体动力学和人口平衡模型(CFD-PBM)模拟中研究了第二种。 I.然后我们在第二部分开发了一个模型框架,通过批量相和接口中的表面活性剂传输方程耦合CGMD和CFD-PBM模拟,考虑到乳化剂吸附参数来源术语。包括最大吸附量,扩散系数和吸附/解吸动力学常数的参数是从CGMD获取的。然后通过表面活性剂占据的界面面积分数来校正聚结效果,并在PBM中加入聚结核功能。与传统的CFD-PBM仿真相比,耦合模型可以大大改善DSD,Sauter平均直径,中值和跨度的模拟,用于高分散的相量(DPA),并正确反映DPA,表面活性剂浓度和转速的影响转子定子(RS)器件。虽然模拟案例验证并展示了这一新模型框架的优势,但在未来也承诺纳入不同类型的表面活性剂。 (c)2018年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号