...
【24h】

Does planetary differentiation really fractionate iron isotopes

机译:行星分化真的会分离铁同位素吗

获取原文
获取原文并翻译 | 示例
           

摘要

The difference in the mean Fe isotope composition of samples from the Earth, Moon, Mars and Vesta has been recently interpreted as tracking contrasted planetary accretion mechanisms [F. Poitrasson, A.N. Halliday, D.C. Lee, S. Levasseur, N. Teutsch, Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms, Earth Planet. Sci. Lett. 223 (2004) 253–266]. Using newly produced Fe isotopic data on terrestrial and lunar samples, pallasites, eucrites and Martian meteorites, Weyer et al. [S. Weyer, A.D. Anbar, G.P. Brey, C. Munker, K. Mezger, A.B. Woodland, Iron isotope fractionation during planetary differentiation, Earth Planet. Sci. Lett. 240 (2005) 251–264] reinterpreted these data as fingerprinting planetary differentiation. In particular, these authors suggested that partial melting in the terrestrial and lunar mantles produced melts isotopically heavy. It is shown here that the inference of Weyer et al. [S. Weyer, A.D. Anbar, G.P. Brey, C. Munker, K. Mezger, A.B. Woodland, Iron isotope fractionation during planetary differentiation, Earth Planet. Sci. Lett. 240 (2005) 251–264] is strongly biased by the sampling approach taken. Notably, these authors used olivine in place of the host bulk peridotites δ57Fe signatures despite this mineral has been shown to be frequently isotopically lighter than coexisting phases, and they analyzed lunar samples heavily affected chemically by the meteoritic bombardment, a process known to alter Fe isotope signatures. Their pallasite metal–silicate fractionation data are also likely biased by the approach adopted to estimate the iron isotope composition of the different mineral phases. In fact, their conclusion of Fe isotopic fractionation during basalt extraction from planetary mantles is invalidated by the observation that basaltic shergottites and eucrites have δ57Fe indistinguishable from those of chondrites. Therefore, the heavier Fe isotopic composition of the Moon relative to the Earth, itself heavier than most chondrites and achondrites remains best explained by loss of light iron isotopes during the high temperature event accompanying the interplanetary impact that led to the formation of the Moon [F. Poitrasson, A.N. Halliday, D.C. Lee, S. Levasseur, N. Teutsch, Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms, Earth Planet. Sci. Lett. 223 (2004) 253–266., F. Poitrasson, S. Levasseur, N. Teutsch, Significance of iron isotope mineral fractionation in pallasites and iron meteorites for the core–mantle differentiation of terrestrial planets, Earth Planet. Sci. Lett. 234 (2005) 151–164].
机译:最近,来自地球,月球,火星和维斯塔的样品的平均铁同位素组成的差异已被解释为追踪对比的行星吸积机制[F. A.N. Poitrasson Halliday,D.C. Lee,S.Levasseur,N.Teutsch,地球,月球,火星和Vesta之间的铁同位素差异,可能是相反的增生机制的记录,《地球行星》。科学来吧223(2004)253–266]。 Weyer等人利用新近产生的有关地球和月球样品,方石,真石和火星陨石的铁同位素数据。 [S. Weyer,A.D. Anbar,G.P. Brey,C.Munker,K.Mezger,A.B.林地,行星分化过程中的铁同位素分馏,地球行星。科学来吧240(2005)251–264]将这些数据重新解释为指纹行星差异。特别是,这些作者提出,在地幔和月球幔中产生的部分融化使同位素同位素重熔。这里表明,Weyer等人的推论。 [S. Weyer,A.D. Anbar,G.P. Brey,C.Munker,K.Mezger,A.B.林地,行星分化过程中的铁同位素分馏,地球行星。科学来吧240(2005)251–264]受到抽样方法的强烈偏见。值得注意的是,尽管这些矿物在同位素上经常比共存相轻,但他们还是用橄榄石代替了主体的橄榄岩δ57Fe特征,并且他们分析了受到陨石轰炸化学影响严重的月球样品,该过程已知会改变Fe同位素签名。他们的钯金属-硅酸盐分馏数据也可能因估算不同矿物相的铁同位素组成所采用的方法而有偏差。实际上,他们的观察结果表明,玄武质玄武岩和赤铁矿中的δ57Fe与球粒陨石中的δ57Fe没有区别。因此,相对于地球而言,月球上较重的铁同位素组成,其本身比大多数球粒陨石和无定形陨石重,这仍然可以最好地解释为伴随着行星际撞击导致月球形成的高温事件中轻铁同位素的损失[F 。 A.N. Poitrasson Halliday,D.C. Lee,S.Levasseur,N.Teutsch,地球,月球,火星和Vesta之间的铁同位素差异,可能是相反的增生机制的记录,《地球行星》。科学来吧223(2004)253–266。,F。Poitrasson,S. Levasseur,N. Teutsch,铁蛋白和陨石中铁同位素矿物分馏对陆地行星“地幔”核心-地幔分化的意义。科学来吧234(2005)151-164]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号