...
首页> 外文期刊>Biologie aujourd’hui >The ABC of abscisic acid action in plant drought stress responses [M??canisme mol??culaire d'action de l'acide abscissique en r??ponse ?? la s??cheresse chez les v??g??taux]
【24h】

The ABC of abscisic acid action in plant drought stress responses [M??canisme mol??culaire d'action de l'acide abscissique en r??ponse ?? la s??cheresse chez les v??g??taux]

机译:脱落酸在植物干旱胁迫响应中的作用基础[脱落酸在响应中的分子作用机理”植物干旱]

获取原文
获取原文并翻译 | 示例
           

摘要

The combined daily consumption of fresh water ranges from 200 to 700 liters per capita per day in most developed countries, with about 70% being used for agricultural needs. Unlike other resources such as the different forms of energy, water has no other alternatives. With the looming prospect of global water crisis, the recent laudable success in deciphering the early steps in the signal transduction of the stress hormone abscisic acid (ABA) has ignited hopes that crops can be engineered with the capacity to maintain productivity while requiring less water input. Although ABA was first discovered in plants, it has resurfaced in the human brain (and many other non-plant organisms: sea sponge, some parasites, hydra to name a few), suggesting that its existence may be widespread. In humans, more amazingly, ABA has shown anti-inflammatory and antiviral properties. Even its receptors and key signaling intermediates have homologs in the human genome suggesting that evolution has re-fashioned these same proteins into new functional contexts. Thus, learning about the molecular mechanisms of ABA in action using the more flexible plant model will be likely beneficial to other organisms, and especially in human diseases, which is topical in the medical circle. ABA can accumulate up to 10 to 30-fold in plants under drought stress relative to unstressed conditions. The built up of the hormone then triggers diverse adaptive pathways permitting plants to withstand temporary bouts of water shortage. One favorite experimental model to unravel ABA signaling mechanisms in all of its intimate detail is based on the hormone's ability to elicit stomatal closure - a rapid cellular response of land plants to limit water loss through transpiration. Each microscopic stoma, or pore, is contoured by two specialized kidney-shaped cells called the guard cells. Because land plants are protected by a waxy cuticle impermeable to gas exchange, the stomatal pores are thus the primary portals for photosynthetic CO2 uptake. Drought, by biasing pathways that lead to rapid closure of these pores, has therefore a negative impact on photosynthesis, and consequently, biomass as well. The stomatal aperture widens and narrows by expansion and contraction, respectively, of these flanking guard cells caused by changes in the intracellular concentrations of ion fluxes. These transport mechanisms most likely share fundamental principles with any excitable cell. These events require coordination of channels, vacuolar and membrane transporters that generate a specific pattern of electrical signals that relay the ABA stimulus. Research on ABA begun in the 1960??s has now been crowned by the achievement of having identified the soluble ABA receptor that turns on and off the activities of a kinase/phosphatase pair, as the heart of the signaling complex. Results distilled from the latest structural studies on these ABA receptors, characterized by the so-called START domain, are beginning to tender the most exciting promise for rational design of agonists and antagonists towards modulating stress adaptive ability in plants. This review will chart the recent extraordinary progress that has enlightened us on how ABA controls membrane transport mechanisms that evoke the fast stomatal closing pathway. ? 2013 Soci??t?? de Biologie.
机译:在大多数发达国家,人均每天的淡水消费总量为200至700升,其中约70%用于农业需求。与其他资源(例如不同形式的能源)不同,水没有其他选择。随着全球水危机的迫在眉睫,最近在破译逆境脱落酸(ABA)信号转导的早期步骤方面取得的可喜成就引来了人们的希望,即可以设计出能够在维持生产能力的同时减少水的投入的农作物。 。尽管ABA首次在植物中发现,但它已在人脑(以及许多其他非植物生物:海海绵,某些寄生虫,九头蛇等)中浮出水面,表明它的存在可能是广泛的。在人类中,更令人惊讶的是,ABA显示出抗炎和抗病毒特性。甚至其受体和关键信号传导中间体在人类基因组中也具有同源性,这表明进化已将这些相同的蛋白质重新塑造为新的功能背景。因此,使用更灵活的植物模型了解ABA在分子中的作用机理可能对其他生物特别是在人类疾病中有益,这在医学界是很热门的。相对于无胁迫条件,在干旱胁迫下,ABA在植物中的积累量最多可达10到30倍。荷尔蒙的积累随后触发了多种适应性途径,使植物能够承受短暂的缺水。一个最喜欢的实验模型来揭示ABA信号转导的所有细节,是基于该激素引起气孔关闭的能力-陆地植物的快速细胞反应,以限制蒸腾作用使水分流失。每个微小的造口或毛孔都由两个称为保卫细胞的特殊肾形细胞形成轮廓。由于陆地植物受到不可交换气体的蜡质表皮的保护,因此,气孔是光合作用吸收二氧化碳的主要途径。因此,干旱会偏向导致这些孔快速闭合的途径,因此对光合作用产生了负面影响,因此对生物量也产生了负面影响。由于细胞内离子通量浓度的变化,这些侧翼保卫细胞的膨胀和收缩分别使气孔孔径变宽和变窄。这些转运机制很可能与任何可激发细胞共享基本原理。这些事件需要通道,液泡和膜转运蛋白的协调,这些转运蛋白会产生特定模式的电信号,从而传递ABA刺激。对1ABA的研究始于1960年代,其成就是已经确定了可开启和关闭激酶/磷酸酶对活性的可溶性ABA受体是信号复合体的心脏。从这些ABA受体的最新结构研究中提炼出的结果(以所谓的START域为特征)开始为合理设计激动剂和拮抗剂设计出最激动人心的前景,以调节植物的逆境适应能力。这篇综述将说明最近的非凡进展,这使我们对ABA如何控制唤起快速气孔关闭途径的膜转运机制有启发。 ? 2013 Soci ?? t ?? de Biologie。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号