首页> 外文期刊>Nanotechnology >Mechanical elasticity of vapour-liquid-solid grown GaN nanowires
【24h】

Mechanical elasticity of vapour-liquid-solid grown GaN nanowires

机译:气液固生长的GaN纳米线的机械弹性

获取原文
获取原文并翻译 | 示例
           

摘要

Mechanical elasticity of hexagonal wurtzite GaN nanowires with hexagonal cross sections grown through a vapour-liquid-solid (VLS) method was investigated using a three-point bending method with a digital-pulsed force mode (DPFM) atomic force microscope (AFM). In a diameter range of 57-135 nm, bending deflection and effective stiffness, or spring constant, profiles were recorded over the entire length of end-supported GaN nanowires and compared to the classic elastic beam models. Profiles reveal that the bending behaviour of the smallest nanowire ( 57.0 nm in diameter) is as a fixed beam, while larger nanowires (89.3-135.0 nm in diameter) all show simple-beam boundary conditions. Diameter dependence on the stiffness and elastic modulus are observed for these GaN nanowires. The GaN nanowire of 57.0 nm diameter displays the lowest stiffness (0.98 N m(-1)) and the highest elastic modulus ( 400 +/- 15 GPa). But with increasing diameter, elastic modulus decreases, while stiffness increases. Elastic moduli for most tested nanowires range from 218 to 317 GPa, which approaches or meets the literature values for bulk single crystal and GaN nanowires with triangular cross sections from other investigators. The present results together with further tests on plastic and fracture processes will provide fundamental information for the development of GaN nanowire devices.
机译:使用三点弯曲法和数字脉冲力模式(DPFM)原子力显微镜(AFM),研究了通过蒸气-液体-固体(VLS)方法生长的六角形纤锌矿GaN纳米线的机械弹性。在57-135 nm的直径范围内,弯曲挠度和有效刚度或弹簧常数记录了在端支撑GaN纳米线的整个长度上的轮廓,并与经典的弹性束模型进行了比较。剖面显示,最小的纳米线(直径为57.0 nm)的弯曲行为是固定光束,而较大的纳米线(直径为89.3-135.0 nm)都表现出单束边界条件。对于这些GaN纳米线,观察到直径对刚度和弹性模量的依赖性。直径为57.0 nm的GaN纳米线显示出​​最低的刚度(0.98 N m(-1))和最高的弹性模量(400 +/- 15 GPa)。但是随着直径的增加,弹性模量下降,而刚度则增加。大多数测试的纳米线的弹性模量范围为218至317 GPa,接近或满足其他研究者提供的具有三角形横截面的块状单晶和GaN纳米线的文献值。本研究结果以及对塑性和断裂过程的进一步测试将为GaN纳米线器件的开发提供基本信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号