...
首页> 外文期刊>Physics in Canada >SI/GE DOTS AND SELF-ASSEIVIBLED NANOSTRUCTURES
【24h】

SI/GE DOTS AND SELF-ASSEIVIBLED NANOSTRUCTURES

机译:SI / GE点和自相关的纳米结构

获取原文
获取原文并翻译 | 示例
           

摘要

The development of strained-layer epitaxy in the early 1980s has made possible the synthesis of defect-free lattice mismatched semiconductor het-ero-structures f'l. This has led to the development of a new class of semiconductor devices in which the band structure is tailored by the composition and strain distribution. Maintaining two-dimensional (2D) morphology and avoiding strain relaxation by limiting the thickness of het-ero-structures were key requirements enabling the fabrication of devices based on strain engineering. In particular, growth conditions leading to three-dimensional (3D) morphology were generally avoided due to requirements in device fabrication and detrimental effects on device performance. Hetero-epitaxy in the regime favoring non-planar growth has, however, been the focus of intense research in the last 15 years. Under those 3D growth conditions, hetero-epitaxy can result in the formation of nanometer-size coherently strained structures with unique physical properties. These so-called quantum dots represent a new class of materials - some kind of artificial atoms, whose properties can be tailored by the size, strain distribution and composition. These novel nanostructures offer interesting prospects for the development of new electronic, photonic or optoelectronic devices. By optimizing growth parameters, it is possible to fabricate self-organized quantum dot structures, which constitutes an attractive "bottom-up" approach to synthesis of structures at the nanometer length scale that could become potential building blocks for future quantum computers and microsensors. In the following, we discuss different aspects in the growth, characterization and engineering of Si_(1-x)Ge_x islands and Ge dots on (001) Si. More in-depth discussions on the SiGe quantum dot system can be found in recent review articles.
机译:1980年代初期应变层外延的发展使得无缺陷晶格失配半导体半空结构f'l的合成成为可能。这导致了新型半导体器件的开发,在该半导体器件中,能带的结构是根据组成和应变分布来定制的。保持二维(2D)形态并通过限制异质结构的厚度来避免应变松弛是实现基于应变工程的器件制造的关键要求。特别是,由于器件制造的要求以及对器件性能的不利影响,通常避免了导致三维(3D)形态的生长条件。在过去的15年中,支持非平面增长的体制中的异质外延一直是研究的重点。在那些3D生长条件下,异质外延可导致形成具有独特物理特性的纳米尺寸相干应变结构。这些所谓的量子点代表了一类新的材料-某种人造原子,其性质可以通过大小,应变分布和组成来调整。这些新颖的纳米结构为新型电子,光子或光电子器件的发展提供了有趣的前景。通过优化生长参数,可以制造自组织的量子点结构,这构成了一种有吸引力的“自下而上”的方法来合成纳米级尺度的结构,这可能成为未来量子计算机和微传感器的潜在构建基块。在下文中,我们讨论了Si_(1-x)Ge_x岛和(001)Si上的Ge点的生长,表征和工程化的不同方面。在最近的评论文章中可以找到有关SiGe量子点系统的更深入的讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号