首页> 中国专利> 一种通过催化内源糖转化成异源糖来提高总碳水化合物或可溶性碳水化合物含量或内源碳水化合物甜度的方法

一种通过催化内源糖转化成异源糖来提高总碳水化合物或可溶性碳水化合物含量或内源碳水化合物甜度的方法

摘要

本发明涉及用于提高由生物体所产生的一种化合物的产量的方法。本发明具体涉及通过产生一种催化一种内源糖(所述植物中通常产生的)转化成一种异源糖(所述植物在相同发育阶段通常不产生的)的糖代谢酶来提高植物组织中总碳水化合物或可溶性碳水化合物的含量或甜度,或提高一种内源碳水化合物含量的方法。本发明也涉及产生一种糖代谢酶以生产一种异源糖从而具有更高的总的可发酵碳水化合物含量的植物和植物部分,并涉及可发酵的碳水化合物和由此所衍生的其他产品。

著录项

  • 公开/公告号CN1788085A

    专利类型发明专利

  • 公开/公告日2006-06-14

    原文格式PDF

  • 申请/专利权人 昆士兰大学;

    申请/专利号CN200480012944.5

  • 发明设计人 R·G·伯奇;L·吴;

    申请日2004-05-12

  • 分类号C12N9/90;C12N15/61;C12N9/24;C12N5/10;A01H5/00;

  • 代理机构上海专利商标事务所有限公司;

  • 代理人范征

  • 地址 澳大利亚昆士兰

  • 入库时间 2023-12-17 17:20:52

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-05-03

    未缴年费专利权终止 IPC(主分类):C12N9/90 授权公告日:20131225 终止日期:20180512 申请日:20040512

    专利权的终止

  • 2013-12-25

    授权

    授权

  • 2006-08-09

    实质审查的生效

    实质审查的生效

  • 2006-06-14

    公开

    公开

说明书

                             发明领域

本发明主要涉及提高生物体所产生的一种化合物的产量的方法。本发明具体涉及通过产生一种催化一种内源糖(所述植物中通常产生的)转化成一种异源糖(所述植物在相同发育阶段通常不产生的)的糖代谢酶来提高植物组织中总碳水化合物或可溶性碳水化合物含量或甜度,或提高一种内源碳水化合物含量的方法。本发明也涉及产生一种糖代谢酶以生产一种异源糖从而具有更高的总的可发酵碳水化合物含量的植物和植物部分,并涉及以及可发酵的碳水化合物和由此所衍生的其他产品。

本说明书所涉及的出版物的详细书目汇总在说明书最后。

                             发明背景

植物是可再生的生物能源、生物材料和用于工业化生物转化的原料的主要来源。植物中所需糖类的产量和浓度是下游生产工艺的技术及经济可行性的关键因素。然而,植物用于合成糖类生物的代谢网络表现出充分的内部缓冲性和冗余性,其结果是一种糖类代谢中一个关键酶的改变对于所收获的这种糖类的产量通常没有有益的变化(Moore,1995;Nguyen-Quoc和Foyer,2001;Fernie等,2002)。例如,Botha等人(2001)的研究显示,在转基因甘蔗中,糖分解中的一个关键酶(酸性转化酶)活性70%的降低没有引起蔗糖的产量或纯度的显著变化。

蔗糖异构酶是由包括多种微生物在内的生物体所产生的酶,具有将二糖蔗糖转化成诸如异麦芽酮糖或海藻酮糖等异构体的能力。蔗糖异构酶在其包括二糖反应产物、反应产物中诸如葡萄糖和果糖等单糖的比例、酶动力学性质、最佳反应条件以及酶对不同于最佳反应条件的敏感性在内的性质方面有所不同(Veronese和Perlot,1999)。

蔗糖是植物内部供能(光合)组织和接收(生长及储存)组织之间碳流通的主要中间体,并是诸如甘蔗和甜菜等某些植物中的主要储存产物。许多报道指出,植物中引入的蔗糖异构酶基因的表达可以导致蔗糖转化成如异麦芽酮糖等异构体,并且认为这一转化可能有利于所述异构体的工业生产。研究重点是针对将蔗糖高水平地或完全转化成作为一种所需工业产品(Birch和Wu,2002;Brnke等,2002b)的或作为一种用于在植物中(in planta)转化成衍生工业材料的前体的异构体(Kunz等,2002)。

通过将一种基础碳源和能量储备转化成无法利用的形式,所述转化也被认为对于植物可能是致命的,从而用于出于诸如工程化雄性不育目的的细胞脱离(Brnke和Sonnewald,2001)。的确,许多报道指出蔗糖异构酶转基因表达对于植物发育和生长是有害的,会引起严重的生长异常、淀粉含量降低以及可溶性碳水化合物含量降低(Brnke等,2002a,b)。

在烟草中,由于从CaMV35S启动子开始的与将蔗糖异构酶靶向胞外间质区的马铃薯蛋白酶抑制剂II信号肽融合的蔗糖异构酶基因的组成型表达对植物发育存在着严重的破坏性作用。检测到低水平的异麦芽酮糖(每平方米叶组织0.3到0.6mM),这相当于叶片淀粉中正常碳水化合物水平的约20%到44%或这一供能组织中正常的低的暂时蔗糖水平的10到45倍。对接收组织中存储的碳水化合物的影响没有报道。叶片和其他器官的生长受到了严重破坏,并且所述植物不能繁殖(Brnke等,2002a)。

在马铃薯中,从块茎特异性马铃薯块茎蛋白B33启动子开始的相同的靶向质外体的蔗糖异构酶的表达对生长和发育没有带来明显的不利影响。异麦芽酮糖产量也较低(每克鲜重块茎10-15μM,相当于块茎淀粉中通常储存的碳水化合物水平的约4%到5%),并稍低于这一淀粉存储接收组织中的通常蔗糖水平。此外,随着蔗糖、己糖和淀粉含量的降低,降低了改造的品系中总的可溶性碳水化合物(不包括淀粉)和总的可发酵碳水化合物(包括淀粉)的产量(Brnke等,2002b)。

为了克服这些问题,本发明的发明人设计了一种新的方法,该方法组合了(i)一种蔗糖异构酶,特别是诸如UQ68J的高效蔗糖异构酶;(ii)使用一种诸如甘蔗的积累蔗糖作为储存的碳水化合物的植物种类;以及(iii)将引入的蔗糖异构酶靶向至例如甘蔗的成熟的茎内存储蔗糖的薄壁组织的巨大液泡等蔗糖存储部位。由于植物内不代谢异麦芽酮糖,本发明的发明人推测其与蔗糖不同,可能不是成熟的贮存组织中可能降低贮存效率和所收获产量的降解和合成的“无效循环”的对象。因此,与先前方法所报道的产量降低不同,本发明人的方法希望能在改造植物中达到更高的可溶性碳水化合物和可发酵碳水化合物的产量。与这一假设相一致的是,发现通过表达靶向至成熟的茎薄壁组织中的蔗糖存储液泡的蔗糖异构酶(例如高效蔗糖异构酶UQ68J),甘蔗汁中异麦芽酮糖浓度能够达到500mM以上。这超过了从未改造的甘蔗中所获得的全部储存的碳水化合物含量,并且可以在内源糖类含量没有相当降低的情况下实现,这使得改造品系中总可溶性糖类含量高出许多。

植物对于蔗糖具有高度适应性的传感器和转运器,但是通常认为这些蔗糖传感器和转运器不能以相同的方式对如异麦芽酮糖等异构体产生应答(Loreti等,2000;Sinha等,2002)。与蔗糖完全不同,植物不能将诸如异麦芽酮糖的一些异构体作为碳源和能量来源进行代谢(Sinha等,2002)。然而,异构体可以引起细胞基因表达谱的变化并改变参与植物蔗糖代谢或信号转导级联的某些酶的活性(Fernie等,2001;Sinha等,2002)。

由于向马铃薯块茎组织切片外源补给异麦芽酮糖改变了其他外源补给的糖类的代谢,Fernie等(2001)提出向马铃薯块茎提供异麦芽酮糖是一种提高淀粉合成的新方法。然而,向诸如马铃薯块茎的植物器官外源补充如异麦芽酮糖的物质对于工业应用而言未必实用,并且没有这一方法已测试或应用于提高淀粉产量的报道。在Brnke等人(2002b)的研究中,从块茎特异性启动子开始表达质外体蔗糖异构酶基因的转基因马铃薯植物积累了接近于块茎中通常蔗糖含量的异麦芽酮糖,但表现出降低的淀粉和总可溶性糖类产量。

基于植物感知相对诸如异麦芽酮糖等相关化合物的蔗糖的不同能力的考虑,本发明人设计了另一种通过适当表达一种引入的蔗糖异构酶以实现提高植物中内源糖类产量的方法。该方法与先前所研究的策略的目的(生产用于获得异麦芽酮糖或异麦芽酮糖衍生物的植物)及其结果(具有降低产量的内源碳水化合物的植物)相反。因为操纵植物新陈代谢的信号及控制机制没有完全明了,发明人进行了充分实验以确定产生其所需工业结果(具有提高的内源碳水化合物的植物)的条件范围。在这方面,发现在改造成低水平表达定向至胞质隔室或隔离在隔室之间的蔗糖异构酶的甘蔗品系中可以在果汁中达到介于700-900mM蔗糖当量的总可溶性糖含量。这大约是从未改造的甘蔗中通常所获得的总的储存的碳水化合物含量的两倍,并且所获的糖类成分几乎没有改变。所述方法不限于用作实例的蔗糖异构酶基因、异麦芽酮糖转化产物、或甘蔗植物。它包括生物体内更为广泛的引入的基因的表达,所述表达导致被所述生物体通常所感知的一种内源化合物底物部分转化成该生物体内不以相同方式所感知的一种产物化合物,并具有导致所需内源化合物的更高产量累积的改变代谢流的作用。

                               发明概述

本发明部分基于这样的发现,即植物内导致一种内源糖部分转化成该植物在相同发育阶段通常不产生的一种糖的一个基因适当的表达谱会改变糖接收信号并引起该植物内包括糖类在内的总的可溶性碳水化合物含量的提高。在用于改进植物沉积组织(sink tissue)的总碳水化合物含量或甜度的方法中、在其沉积组织比未改造植物的沉积组织具有更高的总碳水化合物或可溶性碳水化合物含量或甜度的遗传改造植物中、以及在从这样的遗传改造植物所衍生的产品中,这一发现已经成为实际应用。

因此,本发明的一个方面提供了用于改造植物沉积组织总的可溶性碳水化合物含量或甜度的方法。这些方法通常包括在所述植物的细胞中产生一种催化该植物的一种内源糖转化成该植物中在相同发育阶段通常不产生的外源糖的糖代谢酶,其中所述糖代谢酶以使得所述沉积组织与不产生该酶的植物的相应沉积组织相比,其总的碳水化合物含量或甜度得以提高的水平或功能活性产生。在一些实施方式中,所述糖代谢酶通过表达编码该酶的多核苷酸在植物细胞中产生。在这些实施方式中,所述植物是从多种在其核体中包含与转录控制元件以可操作方式相连的所述编码酶的多核苷酸的转基因植物中选取的。所述转基因植物是在其以使得所选转基因植物的沉积组织与对照植物的相应沉积组织相比总碳水化合物或可溶性碳水化合物含量或甜度得以提高的水平或功能活性产生所述糖代谢酶的基础上选取的。相应地,所述多核苷酸是与在所述植物细胞中可操作的转录控制元件以可操作方式相连的。在一些实施方式中,所述编码酶的多核苷酸是组成型表达的,并且所述转录控制元件因而是组成型启动子。在其他实施方式中,所述编码酶的多核苷酸是选择型表达的,这包括时间选择、组织特异性表达和亚细胞定位的协同。在这些后者的实施方式中,所述转录控制元件从组织特异性启动子、发育调控启动子或可诱导启动子中选择。

在一些实施方式中,沉积组织的总碳水化合物含量或甜度通过在植物细胞中以导致将内源糖部分转化(通常小于约20%,但典型地小于约15%以及更常见地小于约10%的转化)成外源糖的水平或功能活性产生所述糖代谢酶得以提高。相应地,这一部分转化发生在有助于植物生长的正在经历细胞分裂和/或细胞扩展的组织内。在这些实施方式中,所述糖代谢酶相应地在植物细胞的胞质中具有活性,或其活性可以分布在胞质和参与糖储存和/或转运的亚细胞隔室之间。相应地,在这些实施方式中,所述外源糖的积累没有伴随着内源糖或碳水化合物含量相应降低。

在其他实施方式中,沉积组织的总碳水化合物含量或甜度通过将所述糖代谢酶靶向至植物细胞用于糖类储存的亚细胞隔室得以提高。在这些实施方式中,所述糖代谢酶相应地以导致内源糖基本上被转化(通常至少约20%,但典型地至少约40%,更常见至少约60%转化)成外源糖的水平或功能活性存在于所述亚细胞隔室中。相应地,这一充分转化发生在已经实质上停止细胞分裂和细胞扩展并对碳水化合物储存发挥功能的组织内。优选地,所述充分转化不发生在正经历有助于植物生长的细胞分裂和/或细胞扩展的组织内。所述亚细胞隔室相应地是存储糖的隔室,这通常是液泡或液泡及质外体区间。相应地,在这些实施方式中,所述外源糖积累没有伴随着内源糖或碳水化合物含量相应降低。

通常,作为碳沉积器发挥功能的植物细胞包括非光合组织或器官以及储存组织或器官(诸如根、块茎、茎、果实或种子)中的细胞以及诸如叶片等供能器官中的非光合细胞。因此,所述植物通常是其沉积组织具有受糖含量影响的经济价值的植物。这样的植物包括产生具有商业价值的蔬菜和水果的物种,以及包括甘蔗和甜菜在内的收获来用于提取蔗糖和其他糖类的物种。

所述内源糖和外源糖相应地选自单糖、寡糖以及包括糖醇、糖酸、氨基糖和诸如脱氧糖、甲基糖等等其他形式的糖类衍生物。在一种实施方式中,所述内源糖是蔗糖并且所述外源糖选自异麦芽酮糖和海藻酮糖。在这一实施方式中,所述糖代谢酶通常是蔗糖异构酶。

本发明的一个相关方面提供了产生具有与对照植物的相应沉积组织相比具有增高的内源碳水化合物含量的植物的方法。这些方法通常包括从大量在其核体中包含与转录控制元件以可操作方式连接并编码催化植物内源糖转化成外源糖的糖代谢酶的多核苷酸转基因植物中选择具有所需内源碳水化合物含量的转基因植物。在其以使得所述转基因植物的沉积器官的内源碳水化合物含量与对照植物相应沉积器官的这一含量相比得以提高的水平或功能活性产生所述糖代谢酶的基础上选择所述转基因植物。

本发明的另一个方面提供了一种与这里所定义的对照植物细胞相比具有增高的总碳水化合物含量或增高的内源碳水化合物含量的转基因植物细胞。所述转基因植物细胞的核体包含与编码糖代谢酶的多核苷酸以可操作方式相连的转录控制元件。所述糖代谢酶催化所述植物细胞的内源糖转化成外源糖。优选地,所述糖代谢酶以使得该转基因植物细胞的总碳水化合物含量或内源碳水化合物含量与对照植物细胞的该含量相比有所提高的水平或功能活性产生。

本发明的另一个方面提供了一种与这里所定义的对照植物相应的沉积组织相比具有增高的总碳水化合物含量或甜度或增高的一种内源碳水化合物含量的转基因植物。所述转基因植物包含在其核体中含编码催化该植物内源糖转化成外源糖的糖代谢酶的多核苷酸的细胞。为了表达,所述多核苷酸与植物细胞中发挥功能的转录控制元件以可操作方式相连。在一种实施方式中,所述糖代谢酶以使得该转基因植物的沉积组织的总碳水化合物含量或甜度或内源碳水化合物含量与对照植物的相应沉积组织的该含量相比有所提高的水平或功能活性产生。

本发明的另一个方面提供了一种与这里所定义的对照植物沉积组织相比具有增高的总碳水化合物含量或甜度或增高的一种内源碳水化合物含量的转基因植物沉积组织。所述转基因植物沉积组织包括在其核体中含编码催化该植物内源糖转化成外源糖的糖代谢酶的多核苷酸的细胞。为了表达,所述多核苷酸与至少一些该植物细胞中发挥功能的转录控制元件以可操作方式相连。在一种实施方式中,在所述植物的供能和/或沉积组织中以使得所述转基因沉积组织的总碳水化合物含量或甜度或内源碳水化合物含量与对照植物沉积组织的该含量相比得以提高的水平或功能活性产生所述糖代谢酶。相应地,所述沉积组织选自果实、种子、茎、块茎和根。

本发明的另一个方面提供了从如上广泛所述的植物或沉积组织所收获的总碳水化合物或内源碳水化合物。在一种实施方式中,所述碳水化合物选自包括蔗糖、葡萄糖和果糖在内的简单糖。

本发明进一步的一个方面提供了一种通过发酵生产产品的方法,这通常包括将从如上广泛所述的植物或沉积组织所收获的作为发酵底物的碳水化合物进行发酵。通过这一方法产生的发酵产物相应地包括以下一种或多种:乙醇、醋酸、乳酸、二氧化碳、或通过发酵含有从如上广泛所述的植物或沉积组织收获的碳水化合物的底物所产生的其他产物。

本发明的另一个方面提供了在植物中产生一种在该植物相同发育阶段不作为内源糖的非内源性产生的外源糖的方法。这些方法通常包括将一种催化该内源糖转化成所述外源糖的糖代谢酶运送到用作细胞内糖储存的亚细胞隔室。在一些实施方式中,所述亚细胞隔室从液泡或质外体区间中选择。优选地,所述糖代谢酶以导致与相应的未改造植物的所述内源糖含量相比充分提高总糖含量(通常至少高约10%,但优选至少高约50%,更优选至少高约100%)的水平或功能活性运输至所述亚细胞隔室。相应地,所述外源糖的积累没有伴随着内源糖类或碳水化合物含量相应降低。

本发明的另一个方面提供了一种含如这里所定义的一种外源糖的转基因植物细胞。所述转基因植物细胞的核体包含与编码催化该植物细胞中内源糖转化成所述外源糖的糖代谢酶的多核苷酸以可操作方式相连的转录控制元件。所述糖代谢酶包含一个将该酶靶向至所述植物细胞中用于糖储存的亚细胞隔室的靶向信号。

本发明的另一个方面提供了一种具有包含如这里所定义的一种外源糖的沉积组织的转基因植物。所述转基因植物包含在其核体中含编码一种催化该植物的一种内源糖转化成外源糖的糖代谢酶并与在该植物细胞中发挥功能的转录控制元件以可操作方式相连的多核苷酸的细胞,其中所述糖代谢酶包含一个将该酶靶向至所述植物细胞中用于糖储存的亚细胞隔室的靶向信号。

本发明的另一个方面提供了一种包含如这里所定义的一种外源糖的转基因植物沉积组织。所述转基因植物沉积组织包含在其核体中含编码一种催化该植物的一种内源糖转化成外源糖的糖代谢酶并与至少在一些该植物细胞中发挥功能的转录控制元件以可操作方式相连的多核苷酸的细胞,其中所述糖代谢酶包含一个将该酶靶向至所述沉积组织细胞中用于糖储存的亚细胞隔室的靶向信号。相应地,所述沉积组织选自果实、种子、茎和根。

生物体内导致一种被该生物体正常感知的内源化合物底物部分转化成该生物体内不以相同方式感知的产物化合物的引入基因的表达可以改变代谢流,从而引起更高产量的所需内源化合物的累积,这一发现是全新且不可预见的,并在除了这里通过详细实例所提供的蔗糖异构酶基因、异麦芽酮糖转化产物、碳水化合物内源化合物或甘蔗植物之外具有广阔的工业应用。因此,本发明广泛地涵盖了一种生物体内导致被该生物体正常感知的内源化合物底物部分转化成该生物体内不以相同方式感知的产物化合物的引入基因的表达,其具有改变代谢流的作用,引起所需内源化合物更高产量的累积。

本发明人也已经发现一种其序列展示在SEQ ID NO:10中的新的启动子,该启动子可以指导植物(例如单子叶植物,尤其是诸如甘蔗的草本单子叶植物)中茎特异性的基因表达。这一启动子赋予使用先前所测试的启动子所无法得到的有用的表达谱,并且该启动子在包括其序列如SEQ ID NO:20所示的区域的缺失在内的多个元件中与那些启动子具有结构上的不同。因此,本发明的另一个方面提供了一种分离的DNA分子,该DNA分子包含与SEQ ID N0:10所示序列或其生物活性部分、或与SEQ ID NO:10所示序列具有至少约93、94、95、96、97、98、99%序列相同性的变异相对应或互补的核苷酸序列。优选地,所述变异不包含SEQ ED NO:20并且在至少中等严格条件下与SEQ ID NO:10所示序列杂交。

通常,本发明所述的启动子与编码序列相融合以形成用于在感兴趣的植物中表达该编码序列的嵌合构建物。所述构建物随后可以通过任何所选的方法引入宿主植物细胞或植物或植物部分。因此,本发明的另一个方面提供了一种包含与需要转录的外源或内源核酸序列以可操作方式相连的如以上广泛所述的DNA分子的嵌合DNA构建物。在有些实施方式中,所述嵌合DNA构建物进一步包含与所述外源或内源DNA序列以可操作方式相连并在植物细胞中发挥作用以终止转录和/或引起在所转录的RNA序列3’末端添加聚腺苷化核苷酸序列的3’非翻译序列。

所述外源或内源DNA序列相对于向其引入或将引入的植物细胞而言是外源或内源的。在有些实施方式中,所述外源或内源DNA序列编码结构或调控蛋白,或另外编码能调节相应靶基因表达的转录本。在有些实施方式中,所述转录本包含反义RNA或核酶或其他针对相应靶基因表达下调的转录区域。例如,所述的其他转录区域可以包含针对相应靶基因正义抑制(共同抑制)的正义转录本。

本发明的另一个方面设计了一种用于产生转化的植物细胞的方法,该方法包括将如上广泛所述的嵌合DNA构建物引入可再生的植物细胞中以产生转化的植物细胞以及转化的植物细胞的鉴定和挑选。本发明的一个相关方面提供了一种含如上广泛所述的嵌合DNA构建物的转化的植物细胞。

本发明的另一个方面提供了一种从转化的植物细胞中挑选稳定的遗传转化株的方法,该方法包括将如上广泛所述的嵌合DNA构建物引入可再生的植物细胞中以产生转化的植物细胞以及从所转化的植物细胞中鉴定和挑选经转化的植物细胞系。所述可再生细胞可以是可再生的双子叶植物细胞但通常是诸如可再生草本单子叶植物细胞的单子叶植物细胞。在有些实施方式中,所转化的细胞中所述嵌合DNA构建物的表达会赋予所述转化细胞一种表型特征。

本发明的另一个方面设计了一种产生分化的转基因植物的方法,该方法包括将如上广泛所述的嵌合DNA构建物引入可再生的植物细胞中以产生可再生的转化细胞,鉴定或挑选转化细胞种群,以及分化的转基因植物从所述种群中再生。在有些实施方式中,所述嵌合DNA构建物的表达致使该分化的转化植物与相应的非转基因植物相区别。本发明的一个相关方面提供了一种含包含如上广泛所述的嵌合DNA构建物的植物细胞的分化的转基因植物。所述嵌合DNA构建物经该分化的转基因植物的完整周期传播给其后代使之由后代植物表达。因此,本发明也提供了源自所述分化的转基因植物的种子、其他植物部分、组织和后代植物。

附图说明

图1是说明Q117对照植物或转基因品系pUbi68J1.2、pUbil4S2.36和pUbiErw2.1的叶片(#3)、茎(节间#12)和早期根组织的可溶性糖类的毛细管电泳图像。取样的是6个月大具有12到13节的植物。所述转基因品系是来自愈伤组织的第一代无性世代。各个峰表示:1蔗糖,2异麦芽酮糖,3果糖,4葡萄糖。

图2是说明大肠杆菌(E.coli)(A)和转基因甘蔗(B)中不同蔗糖异构酶转化效率的图表。转化效率定义为异麦芽酮糖/(蔗糖+异麦芽酮糖)×100。A中的结果是由3次重复培养得到的含标准误差的平均值。B中的结果是从11个品系的pUbiErw、11个品系的pUbil4S和9个品系的pUbi68J中得到的最大的茎转化效率。样品是来自愈伤组织的第一代无性世代的6个月大具有12到15节的甘蔗。

图3是使用pUbi68J转化的甘蔗品系中3种表型类别的6个月大代表性植物的照片。左边:正常表型(pUbi68J2.36),中间:叶片中脉弱化表型(pUbi68J1.2),右边:矮小表型(pUbi68J2.22)。所述植物是来自愈伤组织的第一代无性世代。

图4是展示甘蔗叶片和茎的总RNA的Northern印迹分析的照片。取样的植物是来自愈伤组织的第一代无性世代的6个月大具有12到15节的甘蔗。上半部分显示了与UQ68J蔗糖异构酶cDNA杂交的杂交条带,其分子量约1700bp。下半部分显示了通过rRNA大小亚基的溴乙锭染色表示的总RNA载样量。泳道1:pUbi68J2.22节间3-4;泳道2:pUbi68J2.22叶片编号1-2;泳道3:pUbi68J2.36节间3-4;泳道4:pUbi68J2.36叶片编号1-2;泳道5:pUbi68J1.2节间3-4;泳道6:pUbi68J1.2叶片编号1-2;泳道7:Q117对照节间3-4;泳道8:Q117对照叶片编号1-2。

图5是说明转基因品系pUbi68J2.22的茎、叶和根中蔗糖转化成异麦芽酮糖的高效率的图表。取样的是来自愈伤组织的第一代无性世代的6个月大具有12节的植物。

图6是显示转基因pUbi68J2.36和Q117对照甘蔗植物中蔗糖积累的图表。取样的是来自愈伤组织的第一代无性世代的6个月大具有15节的植物。

图7是说明转基因品系pUbi68J2.36的茎和叶片组织中异麦芽酮糖积累的图表。取样植物是来自愈伤组织的第一代无性世代的6个月大具有15节的植物。

图8是显示转基因pUbi68J2.36和Q117对照甘蔗植物中总可溶性糖浓度(葡萄糖当量)的图表。取样植物是来自愈伤组织的第一代无性世代的6个月大具有15节的植物。

图9是显示转基因品系pUbi68J2.36和Q117对照甘蔗植物的叶片中光合作用CO2固定率的图表。所述植物4个月大并且在形态学上没有区别。转基因pUbi68J2.136品系植物是再生后第三代无性世代(通过茎插条)。结果是来自3个重复植物的含标准误差的平均值。

图10是说明转基因品系pUbi68J2.36和Q117对照甘蔗植物的叶片中叶绿素浓度的图表。所述植物4个月大并在形态学上没有区别。转基因pUbi68J2.136品系植物是再生后第三代无性世代(通过茎插条)。结果是来自3个重复植物的含标准误差的平均值。

图11是说明转基因品系pUbi68J2.36和Q117对照甘蔗植物的叶片中叶绿素a/b比例的图表。所述植物4个月大并在形态学上没有区别。转基因pUbi68J2.136品系植物是再生后第三代无性世代(通过茎插条)。结果是来自3个重复植物的含标准误差的平均值。

图12是说明转基因品系pUbi68J2.36和Q117对照甘蔗植物的叶片中由不同光强度下叶绿素荧光所测得的光合作用电子迁移率。所述植物4个月大并在形态学上没有区别。转基因pUbi68J2.136品系植物是再生后第三代无性世代(通过茎插条)。结果是来自3个重复植物的含标准误差的平均值。

图13是说明在含靶向液泡的蔗糖异构酶的不同转基因品系和Q117对照植物的根中异麦芽酮糖浓度的图表。根取自用潮湿的棉纸包裹并在28℃放置7天的双芽眼(two-eye)类甘蔗。

图14是说明转基因品系pU3ZERsN68J3.2(含靶向液泡的蔗糖异构酶)叶片中异麦芽酮糖浓度的图表。所述植物8个月大具有21节并且与Q117对照植物没有形态学上的区别。所述转基因植物是再生后第二代无性世代(通过茎插条)。

图15是说明转基因品系pU3ZERsN68J3.2His(含靶向液泡的蔗糖异构酶)茎组织中异麦芽酮糖浓度的图表。所述植物8个月大具有35节并且与Q117对照植物没有形态学上的区别。所述转基因植物是愈伤组织再生后第二代无性世代(初始盆内的截根苗节茎)。

图16是来自转基因品系pU3ZERsN68J3.2His(a)、pU3ZERsN68J1.17(b)、pU3ZERc68JC3.1His(c)和pU3ZERsN68JC3.7His(d)的茎组织的“胞外”和“细胞内”流动组份中异麦芽酮糖浓度的图表。a、b、d的植物8个月大,c植物12个月大。植物a、b、c和d的节间数分别是35、20、43和30。转基因植物b是来自茎插条的第二代无性世代;转基因植物a、c和d是初始盆栽内截根苗节茎形式的第二代无性世代。所有这些品系与Q117对照植物没有形态学上的差异。

图17是说明Q117对照植物(a)以及转基因品系pU3ZERsN68J3.2#1(b)、pU3ZERsN68J3.2#2(c)和pU3ZERsN68J3.2His(d)的茎组织中异麦芽酮糖、其他糖类(蔗糖当量形式的葡萄糖、果糖和蔗糖的总和,如G/2+F/2+S)以及总糖类(蔗糖当量)浓度的图表。所有植物8个月大,分别具有21、27、22和35个节间。Q117由茎插条产生。转基因植物b和c是由茎插条产生的第二代无性世代。转基因植物d是初始盆栽内截根苗节茎形式的第二代无性世代。

图18是说明Q117对照植物(a)以及转基因品系pU3ZERsN68J1.17#1(b)、pU3ZERsN68J1.17#2(c)和pU3ZERsN68J1.2(d)的茎组织中蔗糖、其他糖类(蔗糖当量形式的葡萄糖、果糖和异麦芽酮糖的总和)以及总糖类(蔗糖当量)浓度的图表。所有植物8个月大,分别具有21、20、30和31个节间。Q117由茎插条产生。转基因植物b是由茎插条产生的第二代无性世代。转基因植物c和d是初始盆栽内截根苗节茎形式的第二代无性世代。所有转基因品系与Q117对照植物没有形态学上的差异。

图19是说明Q117对照植物(a)以及转基因品系pU3ZERc68JC1.3His(b)、pU3ZERc68JC3.7His(c)和pU3ZERc68JC3.8His(d)的茎组织中蔗糖、其他糖类(蔗糖当量形式的葡萄糖、果糖和异麦芽酮糖的总和)以及总糖类(蔗糖当量)浓度的图表。所有植物8个月大,分别具有28、32、38和30个节间。Q117对照以及转基因植物b、c和d是由初始盆栽内截根苗节茎产生的第二代无性世代。所有转基因品系与Q117对照植物没有形态学上的差异。

图20是说明含启动子67A(p67A-GUS6.7)的转基因品系和含启动子67B(p67B-GUS3.1)的转基因品系的茎组织中GUS活性水平的图表。两个品系都是6个月大,具有14个节间并由茎插条产生。

图21是用于构建甘蔗中高总糖表型的示例性的“直接基因转移载体”的结构的图示说明。

表A.

序列的简要说明

  序列编号  序列 长度  SEQ ID NO:1  SEQ ID NO:2  SEQ ID NO:3  SEQ ID NO:4  SEQ ID NO:5  SEQ ID NO:6  SEQ ID NO:7   SEQ ID NO:8  SEQ ID NO:9  SEQ ID NO:10  SEQ ID NO:11   SEQ ID NO:12  SEQ ID NO:13   SEQ ID NO:14  SEQ ID NO:15   SEQ ID NO:16  SEQ ID NO:17  SEQ ID NO:18  SEQ ID NO:19  SEQ ID NO:20  用于靶向胞质的UQErw正向引物  用于靶向胞质的UQ14S正向引物  用于靶向胞质的UQ68J正向引物  用于靶向胞质的UQErw反向引物  用于靶向胞质的UQ14S反向引物  用于靶向胞质的UQ68J反向引物  编码经改造的甜马铃薯sporamin的ER信号和N端原  肽(NTPP)的DNA  编码经改造的烟草几丁质酶的ER信号的DNA  编码烟草几丁质酶C端原肽(CTPP)的DNA  启动子序列P67B  用于靶向液泡的UQ68J正向引物(NTPP,或NTPP+  CTPP构建物)  用于靶向液泡的UQ68J反向引物(NTPP构建物)  用于靶向液泡的含6个组氨酸标记的UQ68J反向引物  (NTPP构建物)  用于CTPP构建物的UQ68J反向引物  用于含6个组氨酸标记的CTPP构建物的UQ68J反向  引物  几丁质酶ER前导肽正向引物  几丁质酶ER前导肽反向引物  启动子67正向引物  启动子67反向引物  P67B中没有包含的P67A的序列 35个碱基 35个碱基 34个碱基 28个碱基 30个碱基 30个碱基 111个碱基  69个碱基 36个碱基 987个碱基 31个碱基  27个碱基 45个碱基  45个碱基 63个碱基  24个碱基 26个碱基 23个碱基 29个碱基 49个碱基

                               发明详述

1.定义

除非另有定义,这里所使用的所有技术和科学术语与本发明所属领域一般技术人员所通常理解的具有相同的意义。虽然任何与这里所述的方法和材料相似或等同的方法和材料可以用于本发明的实践和测试,对优选的方法和材料进行了描述。针对本发明的目的,以下对下列术语进行定义。

这里所使用的冠词“一个”和“一种”是指一个或一个以上(即至少一个)该冠词的语法对象。例如,“一个元件”表示一个元件或一个以上元件。

这里所使用的术语“约”是指相对参考量、水平、值、尺寸、长度、位置、大小或总数的长度在30%、优选20%、更优选10%的程度上变化的量、水平、值、尺寸、长度、位置、大小或总数。

这里所使用的术语“外源的”是指一种在经改造的植物中产生的物质,该物质在相应的未改造的植物中在相同的发育阶段通常不会产生。

用于启动子序列的术语“生物活性部分”是指具有至少约0.1、0.5、1、2、5、10、12、14、16、18、20、22、24、26、28、30%标准启动子序列活性的部分。也需要理解,短语“生物活性部分”指启动RNA转录或当其与一个特定基因融合并引入植物细胞时引起该基因以高于所述DNA序列这样的部分不存在的情况下的水平表达的DNA序列的一部分。本发明范围内所包括的是长度至少为约18、19、20、21、22、23、24、25、26、27、28、29、30、40、50、60、70、80、90、100、120、140、160、180、200、250、300、400、500、600、700、800或甚至900个核苷酸的生物活性部分。

这里所使用的术语“顺式作用序列”、“顺式作用元件”或“顺式调控区”或“调控区”或类似的术语应当理解为任何这样的核苷酸序列,当其相对于一个可表达的遗传序列适当定位时,能够至少部分地调控该遗传序列的表达。精通本领域的人员应当意识到,一个顺式调控区可以激活、压制、增强、抑制或以其他方式在转录或转录后水平上改变一个基因序列的表达水平和/或细胞类型特异性和/或发育特异性。在本发明的某些实施方式中,顺式作用序列是一种强化或刺激可表达的遗传序列表达的激活子序列。

在整个说明书中,除非上下文有其他要求,词语“包括”、“包含”和“含”应当理解为意味着包括所述步骤或元件或步骤组或元件组但没有排除任何其他步骤或元件或步骤组或元件组。

“相应”或“相应的”是指这样的多核苷酸:(a)具有与标准多核苷酸序列的全部或部分充分相同或互补的核苷酸序列,或(b)编码与一种肽或蛋白质中的氨基酸序列相同的氨基酸序列。这一短语在其范围内也包括具有与标准肽或蛋白质中的一个氨基酸序列充分相同的氨基酸序列的肽或多肽。

这里所使用的术语“内源的”是指在与所研究植物相同的发育阶段在未改造的植物中正常产生的物质。

术语“外源多核苷酸”或“异源多核苷酸”等等是指通过实验操作引入植物基因组的任何核酸(例如一个基因序列)并可以包括在该植物中发显得基因序列,只要所引入的基因相对于天然存在的基因含有一些改造(例如点突变,存在选择性标记基因,存在loxP位点等等)。

这里所使用的术语“基因”是指细胞基因组的任何及全部离散的编码区域,以及相连的非编码和调控区域。基因也用于表示编码具体多肽的开放阅读框、内含子以及参与表达调控的相邻5’和3’非编码核苷酸序列。在这点上,基因可以进一步包括诸如启动子、增强子、终止和/或多聚腺苷信号等与特定基因天然相连的调控信号或异源控制信号。DNA序列可以是cDNA或基因组DNA或其片段。基因可以引入游离于染色体外或整合入宿主的适当的载体中。

这里所使用的术语“低严格、中等严格、高度严格或很高严格条件下杂交”描述杂交和洗脱的条件。进行杂交反应的指导可以参阅John Wiley&Sons,N.Y.(1989)出版的《分子生物学现代实验方案》(Current Protocols in Molecular Biology)一书6.3.1-6.3.6。在所述参考书中描述了水相和非水相方法,两者均可使用。这里所指的具体杂交条件如下:1)6×氯化钠/柠檬酸钠(SSC)中的低严格杂交条件约45℃,随后在至少50℃在0.2×SSC、0.1%SDS中清洗两次(对于低严格条件清洗温度可以提高到55℃);2)6×氯化钠/柠檬酸钠(SSC)中的中等严格杂交条件约45℃,随后在60℃在0.2×SSC、0.1%SDS中清洗至少一次;3)6×氯化钠/柠檬酸钠(SSC)中的高度严格杂交条件约45℃,随后在65℃在0.2×SSC、0.1%SDS中清洗至少一次;以及4)很高的严格杂交条件是65℃的0.5M磷酸钠、7%SDS,随后在65℃用0.2×SSC、1%SDS清洗至少一次。

“内含子”是通常从初始转录本RNA剪切去除并在成熟的mRNA分子中不存在的DNA或RNA区域。

这里所涉及的“免疫相互作用的”包括所涉及的任何相互作用、反应或分子之间其他形式的联合,尤其是其中一种分子是或模拟免疫系统的一种成分。

“分离的”是指与其天然状态下通常伴随的成分充分或基本分开的材料。例如,这里所使用的“分离的多核苷酸”是指已经从其天然状态下位于其两侧的序列中纯化出来的多核苷酸,例如,一个已经从通常与其邻接的序列中移开的DNA片段。

“标记基因”是指赋于表达所述标记基因的细胞独特表型并从而使得这样转化的细胞与不含有该标记的细胞相区别的基因。选择性标记基因给予人们可以基于对选择性因子(例如除草剂、抗生素、放射性、热或其他对未转化细胞产生损害的处理方式)的抗性进行“选择”的特性。可筛选标记基因(或报道基因)赋于人们可以通过观测或测试(即通过筛选,)进行鉴别的特征,例如β-葡萄糖苷酸酶、荧光素酶、或其他在未转化细胞中不存在的酶活性。

“核体”是指全部的核酸并包括基因组、染色体外核酸分子以及所有RNA分子,诸如mRNA、异源核RNA(hnRNA)、小核RNA(snRNA)、小核仁RNA(snoRNA)、小细胞质RNA(scRNA)、核糖体RNA(rRNA)、翻译调控RNA(tcRNA)、转运RNA(tRNA)、eRNA、信使RNA干扰互补RNA(micRNA)或干扰RNA(iRNA)、叶绿体或质粒RNA(cpRNA)以及线粒体RNA(mtRNA)。

“以可操作方式相连的”或“以可操作方式连接的”等是指多核苷酸元件以功能性关联方式的连接。当其与另一个核酸序列置于功能性关联中时,一个核酸序列是“以可操作方式相连的”。例如,如果其影响所述编码序列的转录,则一个启动子或增强子与一个编码序列是以可操作方式连接的。以可操作方式连接的意味着所连接的核酸序列通常是毗邻的并在需要连接两个蛋白质编码区域的情况下阅读框也是连续的。一个编码序列与另一个编码序列是“以可操作方式相连的”,当RNA聚合酶能将这两个编码序列转录成单一的mRNA,所述mRNA随后被翻译成包含源自这两个编码序列的氨基酸的单一多肽。所述编码序列不需要是毗邻的,只要所表达的序列最终加工产生所需的蛋白质。将启动子与可转录多核苷酸“以可操作方式连接”意味着将所述可转录多核苷酸(例如蛋白编码多核苷酸或其他转录本)置于启动子的调控之下,该启动子随后控制所述多核苷酸的转录和任选地控制其翻译。在异源启动子/结构基因组合物的构建中,通常优选将启动子或其变体定位于离可转录多核苷酸的转录起始位点一定距离处,该距离与其天然状况(即该启动子所源自的基因)中启动子与其所控制的基因之间的距离大致相等。如本领域内所知的,可以允许这一距离的一些改变而不会丧失其功能。类似地,相对于置于其控制下的可转录多核苷酸的调控序列元件的优选定位由该元件在其天然状况(即其所源自的基因)中的定位所决定。

这里所使用的“植物”和“分化植物”是指含分化的植物细胞类型、组织和/或器官系统的完整的植物或植物部分。上述术语的含义中也包括植物幼苗和种子。本发明所包括的植物是任何适用于转化技术的植物,包括被子植物、裸子植物、单子叶植物和双子叶植物。

这里所使用的术语“植物细胞”是指原生质体或其他源自植物的细胞、配子产生细胞以及再生为完整植物的细胞。植物细胞包括植物中的细胞以及原生质体或培养的其他细胞。

“植物组织”是指源自根、芽、果实、花粉、种子、瘤组织(如冠瘿病)以及培养的植物细胞多种形式的聚合的分化的或未分化的组织,诸如胚胎和愈伤组织。

术语“多核苷酸变体”和“变体”等等是指具有与标准多核苷酸序列充分的序列相同性的多核苷酸或在下文所定义的严格条件下与标准序列杂交的多核苷酸。这些术语也包括与标准序列通过至少一个核苷酸的添加、删除或替代而不同的多核苷酸。因此,术语“多核苷酸变体”和“变体”包括其中已经添加或删除或用不同核苷酸取代了一个或多个核苷酸的多核苷酸。在这一点上,本领域内所熟知的是,对一个标准多核苷酸序列可以进行包括突变、添加、删除和置换在内的某些改变,由此改变的多核苷酸保留了标准多核苷酸的生物学功能或活性。因此,这些术语包括了启动RNA转录或当与具体基因融合并引入植物细胞时引起该基因以高于不存在这样的多核苷酸时可能的水平表达的多核苷酸。术语“多核苷酸变体”和“变体”也包括天然存在的等位基因变体。

这里所使用的术语“多核苷酸”或“核酸”是指mRNA、RNA、cRNA、cDNA或DNA。该术语通常表示长度大于30个核苷酸的寡核苷酸。

这里交互使用的“多肽”、“肽”和“蛋白质”是指氨基酸残基的聚合物及其变体和合成的类似物。这样,这些术语应用于其中一个或多个氨基酸残基是合成的非天然存在的氨基酸(诸如相应的天然氨基酸的化学类似物)的氨基酸聚合物以及天然氨基酸聚合物。

这里以最广泛的意义使用术语“启动子”,它包括通常位于mRNA编码区上游(5’)控制转录起始和水平的DNA区域。这里所说的“启动子”在最广泛的上下文中使用并包括传统基因组基因的转录调控序列(包括TATA和CCAAT盒式序列)以及对发育和/或环境刺激产生应答或以组织特异或细胞类型特异方式改变基因表达的附加调控元件(即上游激活序列、增强子和静默子)。通常但不是必需地,启动子位于表达受其调控的结构基因上游或5’端。此外,含启动子的调控元件通常位于该基因转录起始位点2kb以内。如本发明所述的启动子可以包含位于所述起始位点更远端的附加特殊调控元件以进一步增强与其以可操作方式相连的结构基因在细胞中的表达,并/或改变该表达的时间或可诱导性。

“组成型启动子”是指在植物的许多或所有组织中指导以可操作方式相连的可转录序列表达的启动子。

“沉积组织特异性启动子”是指与包括供能组织(例如叶片)在内的植物其他组织中的表达相比,优先指导植物沉积组织(例如果实组织、根组织、块茎组织、种子组织、茎组织或沉积叶片组织)中以可操作方式相连的可转录序列表达的启动子。

这里所使用的术语“重组多核苷酸”是指通过对核酸的操作体外形成的自然界中通常不存在的多核苷酸形式。例如,重组多核苷酸可以是表达载体的形式。通常,这样的表达载体包括与所述核苷酸序列以可操作方式相连的转录和翻译调控核酸。

“重组多肽”是指使用重组技术(即通过重组多核苷酸的表达)产生的多肽。

对于植物材料这里所使用的术语“再生”是指由植物细胞、植物细胞组、植物部分(包括种子)或植物枝条(例如,从原生质体、愈伤组织或组织部分)生长成完整的分化的植物。

本说明书中所使用的“报道分子”是指通过其化学性质提供了一种允许检测包含抗原结合分子和其目标抗原的复合物的分析用可鉴别信号的分子。术语“报道分子”也延伸到细胞凝集或凝集抑制(诸如乳胶颗粒上红细胞凝集等等)的使用。

这里所使用的“选择性表达”是指几乎局限于植物特定器官(包括但不限于果实、块茎、根或种子)中的表达。该术语也可以表示器官中在特定发育阶段的表达,诸如在胚胎形成早期或晚期或成熟的不同阶段在竹茎中的表达;或表示可以被某些环境条件或处理所诱导的表达。因此选择性表达与组成型表达不同,后者是指在植物所经历的大部分或所有状态下在许多或所有植物组织中表达。选择性表达也可能导致基因表达产物在特殊的植物组织、器官或发育阶段中相分隔。在诸如胞质、液泡或质外体区间等亚细胞位置的分隔可以通过在基因产物的结构中包含用于转运至所需细胞隔室的适当的信号得以实现,或是在半自主的细胞器(质粒和线粒体)的情况下通过具有适当调控序列的转基因直接整合入细胞器基因组得以实现。

用于描述两个或更多多核苷酸或多肽之间序列关系的术语包括“标准序列”、“比较窗口”、“序列相同性”、“序列相同百分比”和“充分相同”。“标准序列”是长度至少12个、经常15到18个、通常至少25个的包括核苷酸和氨基酸残基在内的单体单位。由于两个多核苷酸可以各自包括(1)所述两个多核苷酸之间相似的一个序列(即仅是完整多核苷酸序列的一部分),以及(2)所述两个序列之间不同的一个序列,两个(或更多)多核苷酸之间的序列比较通常通过在“比较窗口”上比较这两个多核苷酸序列以确定和比较序列局部区域的相似性。比较窗口是指至少50个、通常约50到约100个、更常见约100到约150个连续位置的概念性片段,两个序列最优化对齐后在所述概念性片段中一个序列与具有相同编号的连续位置的参照序列进行比较。为了所述两个序列的最优化对齐,与参照序列(其不含碱基添加或缺失)相比,比较窗口可以包括约20%或更少的碱基添加或缺失(即缺口)。用以对准一个比较窗口的序列的最佳队列可以通过算法(威斯康星遗传学软件包第7版(WisconsinGenetics Software Package Release 7.0)中的GAP、BESTFIT、FASTA以及TFASTA,Genetics Computer Group,575 Science Drive Madison,WI,USA)的计算机运行或通过检验以及使用各种方法中任选方法所产生的最佳队列(即导致比较窗口上最高同源性百分比的)进行。可以参考例如Altschul等,1997,Nucl.Acids Res.25:3389所公开的BLAST家族程序。序列分析的详细讨论可以查阅Altschul等所著《分子生物学现代实验方案》(Current Protocols in Molecular Biology),JohnWiley&Sons Inc,1994-1998)一书19.3单元第15章。

这里交互使用的术语“序列相同性”和“相同”指比较窗口中在核苷酸对核苷酸或氨基酸对氨基酸的基础上序列是相同的。因此,“序列相同性百分比”是通过在比较窗口上比较两个最佳对准的序列,确定这两个序列中相同的核酸碱基(例如A、T、C、G、U、I)或相同的氨基酸残基(例如Ala、Pro、Ser、Thr、Gly、Val、Leu、He、Phe、Tyr、Trp、Lys、Arg、His、Asp、Glu、Asn、Gln、Cys和Met)所在位置的数量以产生匹配位置数量,将匹配位置数除以该比较窗口中总的位置数(即窗口大小),并将结果乘以100以产生序列相同性百分比进行计算的。针对本发明的目的,“序列相同性”应理解为表示通过DNASIS程序(日立软件工程公司,针对视窗系统的2.5版,Hitachi Software engineering Co.,Ltd.,South SanFrancisco,California,USA)使用软件附带的参考手册中所使用的标准默认值计算的“匹配百分比”。

这里所使用的“沉积细胞”和“沉积组织”是指在收获期包含通过已经以不同于二氧化碳的形式的净流入进入细胞的有机碳的细胞、组织或器官。植物中沉积组织包括所有非光合组织以及具有通过其他光合细胞固定的或以不同于二氧化碳直接固定的其他方式从周围媒介或环境所获得的有机碳净流入的光合组织。

这里所使用的“严格”指杂交过程中温度和离子强度条件,以及存在或不存在某些有机溶剂。严格程度越高,固定的核苷酸序列和标记的多核苷酸序列之间的互补程度就越高。

“严格条件”是指该条件下只有具有高频率互补碱基的核苷酸序列能杂交的温度和离子强度条件。所需要的严格程度取决于核苷酸序列以及存在于杂交过程中的各种成分。通常,在特定离子强度和pH值下选择的严格条件比特定序列的热解链点(Tm)低约10到20℃。Tm是50%靶序列与互补探针杂交的温度(在具体离子强度和pH下)。

术语“糖”、“糖衍生物”以其最广泛的含义在这里使用并包括:包括具有实验式(CH2O)n(其中n=3或更大值)的单糖(醛醣和酮醣),这包括四糖(例如赤藓糖、苏糖、赤藓酮糖)、戊糖(例如核糖、阿拉伯糖、木糖、来苏糖、核酮糖、木酮糖)、己糖(例如阿洛糖、阿卓糖、葡萄糖、甘露糖、古洛糖、艾杜糖、半乳糖、塔罗糖、阿洛酮糖、果糖、山梨糖、塔格糖),以及诸如景天庚酮糖或甘露庚酮糖等更长的分子;多个单糖单位经糖苷键相连形成的寡糖,包括二糖(例如麦芽糖、乳糖、龙胆二糖(gentibiose)、蜜二糖、海藻糖、槐糖、primoverose、芸香糖、蔗糖、异麦芽酮糖、海藻酮糖、松二糖、麦芽酮糖、麦白糖)以及诸如蜜三糖、松三糖、粉虱蜜三糖(bemisiose)或水苏糖等更长的低聚物;糖醇(例如赤藻糖醇、核糖醇、甘露醇、山梨醇);糖酸(例如葡萄糖酸、葡糖二酸、葡糖醛酸);氨基糖(例如氨基葡萄糖、氨基半乳糖);以及诸如脱氧糖、甲基糖、磷酸糖和UDP糖的其他变异形式,其中一些可以通过植物代谢途径的作用转化成上述的糖或其他糖衍生物。

术语“转化”是指通过外源或内源核酸的引入引起的例如细菌或植物等生物体基因型的改变。“转化株”是指如此改变的生物体。

这里所使用的术语“转基因的”是指通过所引入的外源或异源基因或序列的随机或定点整合或以可复制的非整合形式稳定存在对其中的内源基因组进行补充和改造的遗传改造植物。“转基因”是指引入植物的基因或序列。

“载体”是指可以向其中插入或克隆一个核酸序列的优选DNA分子来源(例如来自质粒、噬菌体或植物细胞)的核酸分子。载体优选地包含一个或多个唯一的限制性位点并可以具备在具体的宿主细胞(包括靶细胞或组织或祖细胞或其组织)中自主复制的能力,或是与具体的宿主基因组整合使得所克隆的序列可以再生。因此,载体可以是自主复制的载体,即以游离于染色体外的实体形式存在的载体,其复制不依赖于染色体复制,例如线性或闭环质粒、染色体外元件、微染色体或人工染色体。所述载体可以包含确保其自我复制的任何工具。另外,载体可以在其引入细胞时整合入受体细胞基因组并与其所整合的染色体共同复制的。载体系统可以包含单一的载体或质粒、共同包含引入宿主细胞基因组的总DNA的两个或更多载体或质粒、或是一个转位子。载体的选择通常取决于载体与该载体所要引入的细胞的兼容性。载体也可以包含能用于选择适当的转化株的诸如抗生素抗性基因等选择标记。这样的抗性基因的实例对于精通本领域的人员而言是熟知的。

2.改造植物组织总的碳水化合物含量或甜度的方法

本发明部分基于以下发现:植物(例如甘蔗)中导致一部分细胞蔗糖转化为异麦芽酮糖(所述植物中通常不产生的外源糖)的诸如蔗糖异构酶的一种外源或异源糖代谢酶的表达可以导致该植物蔗糖存储组织中总碳水化合物浓度充分提高。不希望受任何具体理论或操作模式的束缚,相信对参与所述植物所正常感知的一种糖转化为不以相同方式所感知的新的糖的代谢的具体改变能够转变代谢并导致更高浓度碳水化合物的积累。本发明人认为,这样的细胞水平上的具体改变能在植物整体水平上改变供能-沉积的关系,这通过对供能组织中的合成、供能和沉积组织之间的转运以及沉积组织中的更新或存储的组合作用导致沉积组织中碳水化合物更高的积累。

因此,本发明提供了用于改造植物沉积组织的总碳水化合物含量或甜度的新方法。所述方法通常包括在植物中产生催化该植物的一种内源糖转化成该植物在相同发育阶段通常不产生的外源糖的糖代谢酶。优选地,所述糖代谢酶产生的水平或功能活性与不产生该酶的对照植物的相应沉积组织的含量或甜度相比提高了沉积组织的碳水化合物含量或甜度。在一些实施方式中,通过编码该酶的多核苷酸的表达在植物中产生所述糖代谢酶。在这些实施方式中,所述植物是从多种在其核体内含与转录控制元件以可操作方式相连的编码该酶的多核苷酸的转基因植物中挑选的转基因植物。在其产生的糖代谢酶水平或功能活性使得与不产生该酶的对照植物的相应沉积组织的含量或甜度相比转基因植物沉积组织的总碳水化合物或可溶性碳水化合物含量或甜度得以提高的基础上挑选转基因植物。

在有些实施方式中,通过在植物细胞中产生导致内源糖部分转化为外源糖水平或功能活性的糖代谢酶,沉积组织的总碳水化合物含量或甜度或内源碳水化合物含量得以提高。在这些实施方式中,糖代谢酶的适当活性位于胞质中或分布在胞质和参与糖存储和/或转运的其他细胞隔室之间。通常,在这些实施方式中,低于约30%、20%或15%,并且适当地低于约10%、9%、8%、7%、6%、5%、4%、3%、2%或1%内源糖转化成外源糖实现了提高沉积组织的可溶性碳水化合物含量或甜度的目标。这些实施方式中优选地,外源糖的积累没有伴随着内源糖或碳水化合物含量相应降低。

在其他实施方式中,通过将糖代谢酶导向至植物细胞中用于糖储存的亚细胞隔室(例如液泡或质外体区间)沉积组织的总碳水化合物含量或甜度或内源碳水化合物含量得以提高。在这些实施方式中,糖代谢酶以导致内源糖充分转化成外源糖(通常至少约20%、25%或30%,但典型地至少约40%、45%、50%或55%,更常见地至少约60%、65%、70%、75%、80%、85%或90%转化)的水平或功能活性适当地存在于亚细胞隔室中。优选地,正经历有助于植物生长的细胞分裂和/或细胞扩展的组织内不发生所述的充分转化。这些实施方式中优选地,所述外源糖的累积没有伴随着内源糖或碳水化合物含量相应降低。

这样,通过调节内源糖转化成外源糖的水平,沉积组织总碳水化合物含量或甜度或内源碳水化合物含量的改造得以实现。这一转化可以在植物的所有组织中实现,例如通过使用组成型启动子以推动编码糖代谢酶的序列的表达。另外,通过使用组织特异性或发育调控启动子,可以在供能组织、转运组织或沉积组织中实现所述转化。

在有些实施方式中,内源糖转化为外源糖的水平通过提高或降低编码糖代谢酶的序列的表达水平进行调控。举例来说,这可以在转录水平上通过使用能控制从编码序列所表达的转录本水平的不同强度的启动子或诱导型启动子得以实现。另外,通过改变每个细胞中含编码序列和以可操作方式与之相连并在细胞中可发挥功能的转录控制元件的构建物的拷贝数可以对酶编码序列的表达水平进行调控。另外,可以对多种转化株进行挑选并筛选那些由转基因整合位点附近的内源序列的影响而产生的具有良好的转基因表达水平和/或特异性的转化株。转基因表达的良好水平和表达谱是指其导致需要收获的组织的可溶性碳水化合物含量或甜度得以充分提高。这可以通过在需要收获的大致发育阶段进行简单的转化株测试进行检测,例如使用实施例9中的方法。在某些实施方式中,编码序列所选择的表达水平使其比参考表达水平高至少约10%、20%、30%、40%、50%、60%、70%、80%或90%,或甚至至少约100%、200%、300%、400%、500%、600%、700%、800%、900%或1000%,或比参考表达水平低至少约10%、20%、30%40%、50%、60%、70%、80%、90%、92%、94%、96%、97%、98%或99%,或甚至至少约99.5%、99.9%、99.95%、99.99%、99.995%或99.999%。

在另一实施方式中,通过使用影响编码糖代谢酶的mRNA的加工或稳定性的转录的基因内的序列(顺式RNA序列)或分别转录的序列(反式RNA序列)可以在转录后调控编码序列的表达水平。例如,顺式RNA序列可以改变不翻译的前导序列的二级结构或包含读框外起始密码子或次优起始密码子环境或稀有密码子使用以控制翻译速度;或他们可以包括导致RNA加工错误或mRNA稳定性降低的与内含子剪切位点具有一些相似性的序列或多聚腺苷信号。反式RNA序列的例子包括共表达的反义分子或干扰或抑制表达的核酶。另外,约21个到约23个核苷酸的控制其所对应的具体mRNA裂解的RNA分子(例如Tuschl等在美国专利申请No.20020086356中所述的)可以用于介导RNA干扰从而调节酶编码序列的表达。

在另一种实施方式中,通过使用不同功能活性的糖代谢酶对内源糖转化成外源糖的水平进行调节。这可以由进行糖转化的细胞隔室中酶的具体活性或稳定性的差异所引起。在某些实施方式中,用于将内源糖转化成外源糖的糖代谢酶的活性比标准酶的活性高至少约10%、20%、30%、40%、50%、60%、70%、80%或90%,或甚至至少约100%、200%、300%、400%、500%、600%、700%、800%、900%或1000%,或比标准酶的活性低至少约10%、20%、30%、40%、50%、60%、70%、80%、90%、92%、94%、96%、97%、98%或99%,或甚至至少约99.5%、99.9%、99.95%、99.99%、99.995%或99.999%。不同活性的糖代谢酶可以是天然的或可以通过合成或重组方法获得,例如,通过改造标准或亲本酶的催化位点或任何其它位点(例如底物结合位点,辅助因子结合位点)。通常,所述改造通过对亲本酶序列中的至少一个氨基酸使用例如本领域内所知的理性或已有的突变或组合化学的方法进行置换、添加或删除。变异的糖代谢酶可以包括保守的氨基酸置换。“保守的氨基酸置换”是指其中用具有相似侧链的氨基酸残基替代所述氨基酸残基。本领域内对具有相似侧链的氨基酸残基家族进行了定义。这些家族包括具有碱性侧链(例如赖氨酸、精氨酸、组氨酸)、酸性侧链(例如天冬氨酸、谷氨酸)、不带电荷的极性侧链(例如甘氨酸、天冬酰胺酸、谷氨酰胺、丝氨酸、苏氨酸、酪氨酸、半胱苷酸)、非极性侧链(例如丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、甲硫氨酸、色氨酸)、β分枝侧链(例如苏氨酸、缬氨酸、异亮氨酸)和芳香族侧链(例如酪氨酸、苯丙氨酸、色氨酸、组氨酸)的氨基酸。这样,亲本酶中的一个氨基酸残基适宜地用相同侧链家族的另一个氨基酸残基替代。另外,在另一种实施方式中,在整个编码标准酶的多核苷酸或其部分上可以通过诸如饱和突变随机引入突变,并且所获得的突变体可以对酶活性进行筛选以鉴别具有与亲本酶不同活性的突变体。可以检测感兴趣的酶的相对活性,例如通过在检测前及/或检测过程中在模拟完成所述糖转化的植物细胞区室条件下对粗提或纯化的酶进行孵育对实施例2中的方法加以改造,可以作为在这些条件下对感兴趣的酶的稳定性和特异活性的附加检测。

在其他实施方式中,通过使用导向至不同功能性亚细胞隔室的糖代谢酶对内源糖转化成外源糖的水平和位置进行调节。在说明性的实例中,所述活性导向之作为主要代谢隔室的胞质中。这可以通过导致胞质内不含转运至其他细胞隔室的信号序列形式的酶的合成的核基因的表达得以实现。在其他示例性实例中,通过在酶序列中包含将该酶从胞质转运至所需隔室的信号,所述活性导向至诸如液泡的存储隔室或诸如胞外(质外体)区间的存储和转运隔室。某些信号序列可以导致酶活性分配在两个或更多细胞隔室之间(Smail等,1998)。例如,实施例4中所述的NTPP信号(SEQID No:7)将蛋白质有效导向至甘蔗液泡,而实施例5中所述的CTPP信号(SEQ ID NO:8+SEQ ID NO:9)可以导致蛋白质在甘蔗的胞质和分泌途径(包括液泡、内膜系统和质外体)之间分配(Gnanasambandam和Birch,2004)。

其他因素可以影响沉积组织中包括可利用底物(即内源糖)量的可溶性碳水化合物含量或甜度的改变。糖代谢酶可利用的底物量可以取决于作为所述改变(包括种属中的突变体)主体的植物种类、产生表达的组织类型、表达的亚细胞定位以及具体植物的发育阶段。所引入蛋白质的稳定性也可以取决于底物量。然而,使用包括上述手段在内的常规方法认为在需要情况下可以实现任何优化。

不同植物产生的内源糖可以是不同的,并且同样地,一种植物的内源糖可以是另一种植物的外源糖。因此,作为基础需要确定哪些糖是所选植物内源产生的以由此推断哪些糖对该植物是外源得以及可以用于在该植物中产生外源糖的糖代谢酶的类型。植物内源产生的糖的类型可以使用精通本领域的人员所熟知的方法确定。这些方法包括通过电泳或色谱(包括纸色谱、薄层色谱、气相色谱、气-液色谱和高效液相色谱)技术对糖或糖衍生物的分离。分离的成分通常通过将分离图谱与已知特征的标准品比较、或通过诸如质谱和核磁共振光谱等分析技术进行鉴别。例如,可以参考实施例9,Robinson 1980所著《高等植物的有机组成》(The OrganicConstituents of Higher Plants,Cordus Press),North Amherst,USA;Adams等,1999,Anal.Biochem.266:77-84;Veronese和Perlot 1999,Em.Microbial Tech.24:263-269;Hendrix和Salvucci 2001,J.Insect Physiol.47:423-432;Thompson等,2001,Carbohydrate Res.331:149-161;以及其所引用的参考文献。

关于植物所产生的内源糖的知识允许对将一种或多种内源糖转化成外源糖或糖衍生物的适当的糖代谢酶进行推测。例如,糖代谢酶可以催化从氧化反应、还原反应、脱氢反应、加氢反应、异构化、包括但不限于乙酰化、羧化、葡糖苷酸化、甘氨酸共轭、甲基化(O-、N-或S-连接的)、磷酸化和硫酸盐共轭在内的共轭反应以及水解反应中挑选。可以催化所需转化的酶的例子包括异构酶、表异构酶、歧化酶、激酶、醛缩酶、转移酶、转酮醇酶、磷酸酶、合酶、羧化酶、脱氢酶和水解酶。

内源和外源糖适宜地从单糖、寡聚糖、糖醇、糖酸、氨基糖以及其他诸如脱氧糖、甲基糖等等变体中选择。单糖的例子包括具有分子式(CH2O)n的化合物,其中n=3或更大但适当地小于10;包括含四糖(例如赤藓糖、苏糖、赤藓酮糖)、戊糖(例如核糖、阿拉伯糖、木糖、来苏糖、核酮糖、木酮糖)、己糖(例如阿洛糖、阿卓糖、葡萄糖、甘露糖、古洛糖、艾杜糖、半乳糖、塔罗糖、阿洛酮糖、果糖、山梨糖、塔格糖),以及诸如景天庚酮糖或甘露庚酮糖等更长的分子。通过两个或更多单糖单位经糖苷键相连形成的寡聚糖可以从二糖(例如麦芽糖、乳糖、龙胆二糖(gentibiose)、蜜二糖、海藻糖、槐糖、primoverose、芸香糖、蔗糖、异麦芽酮糖、海藻酮糖、松二糖、麦芽酮糖、麦白糖)和诸如蜜三糖、松三糖、粉虱蜜三糖(bemisiose)或水苏四糖等更长的低聚物中选择。糖醇的例子包括但不限于赤藻糖醇、核糖醇、甘露醇、山梨醇。糖酸的非限制性例子包括葡糖酸、葡糖二酸和葡糖醛酸。氨基糖的非限制性例子包括氨基葡萄糖、氨基半乳糖。内源或外源糖也可以从诸如脱氧糖和甲基糖等其他变体中选择,其中有些可以通过植物代谢途径的作用转化成上述的糖或其他糖衍生物。在某些实施方式中,所述外源糖是内源糖的异构体。在这一实施方式的一个实施例中,所述内源糖是蔗糖并且糖代谢酶是通过异构化将蔗糖转化成选自异麦芽酮糖和海藻酮糖的蔗糖异构酶。

如本发明所述,植物中内源糖通过糖代谢酶部分转化成外源糖能使该植物或该植物所收获部分与不产生该酶的对照植物的相应组织相比提高了总碳水化合物含量或甜度。示例性的碳水化合物包括但不限于诸如葡萄糖、果糖和蔗糖等间单糖以及某些可溶的聚合物和其他可溶的细胞成分。在一种实施方式中,所述方法产生的沉积组织与对照植物细胞中所测量的结果相比,具有可溶性碳水化合物形式的、提高的每单位沉积组织重量可溶性碳水化合物形式的碳含量的提高。碳水化合物可以使用精通本领域的人员所知的常规实验方案进行检测。

3.提高生物体内所需代谢物含量的方法

这里所详细描述的用于提高植物中碳水化合物的含量的原理和方法也可以应用于提高其他其中不同的存储碳水化合物占主导的生物体(诸如真菌中的海藻糖以及动物中的糖原)中碳水化合物含量。这些原理和方法也可以应用于提高其他种类的所需代谢物(诸如生物体内的脂类、氨基酸和肽或次级代谢物)的含量。精通本领域的人员应当认识到,在这里详细公开的方法上的变更,例如增加植物中碳化水化合物的方法可以实现生物体中其他种类所需代谢物的增加。因此,本发明广泛包括了导致将一种生物体正常感知的底物内源化合物部分转化成该生物体内不以相同方式所感知的产物化合物的引入基因在生物体内的表达,该表达具有改变代谢流导致更高产量的所需内源化合物的积累的作用。

4.核酸构建物

在某些实施方式中,所述糖代谢酶通过编码该酶的外源或异源多核苷酸表达在植物细胞中产生。通常,在核酸构建物中所述外源或异源多核苷酸以可操作方式与转录控制元件相连。所述转录控制元件合适地包括启动子以及任选的顺式作用序列,两者在所述植物细胞中都具有功能性。优选地,所述构建物包括3’非翻译序列和标记基因或两者之一。

4.1转录控制元件

本发明所设计的启动子序列可以对所转化的宿主植物而言是天然的或可以是源自所述区域在宿主植物中具有功能性的另外来源。其他来源包括农杆菌属(Agrobacterium)的T-DNA基因,诸如用于胭脂碱、章鱼碱、甘露碱生物合成的启动子或其他冠瘿碱启动子;植物启动子,诸如泛素启动子、组织特异性启动子(见例如Conkling等的美国专利No.5,459,252;Advanced Technologies的WO 91/13992);病毒启动子(包括宿主特异性病毒)或部分或完全合成的启动子。许多在单子叶和双子叶植物中发挥功能的启动子是本领域内所熟知的(见例如Greve,1983,J.Mol.Appl.Genet.1:499-511;Salomon等,1984,EMBOJ.3:141-146;Garfmkel等,1983,Cell 27:143-153;Barker等,1983,Plant Mol Biol 2:235-350);这包括多种从植物(诸如来自玉米ubi-l基因的Ubi启动子,Christensen和Quail,1996)(见例如美国专利No.4,962,028)和病毒(诸如花椰菜花叶病毒启动子CaMV35S)所分离的启动子。

启动子序列可以包含调控转录的顺式作用序列,其中的调控包括例如化学或物理抑制或诱导(例如基于代谢物、光线或其他理化因素的调控;见例如WO 93/067l0公开的线虫反应型启动子)或基于细胞分化的调控(诸如与植物中的叶片、根、种子或其他有关的;见例如美国专利No.5,459,252公开的根特异性启动子)。因此,启动子区域,或这样的区域的调控部分,是从如此调控的适当基因中获得的。例如,1,5-核酮糖磷酸二氢羧化酶是光线诱导的并可以用于转录启动。已知其他受刺激、温度、创伤、病原体作用等等诱导的基因。

可以使用的其他顺式作用序列包括转录和/或翻译增强子。这些增强子区域对于精通本领域的人员来说是熟知的,并且可以包括ATG起始密码子及相邻序列。起始密码子必须与编码外源或异源多核苷酸有关的序列的阅读框相协调以保证完整序列的翻译。翻译控制信号和起始密码子可以是天然和合成的多种起源的。翻译起始区可以由转录起始区的来源或由外源或异源多核苷酸提供。该序列也可以源自所选用以推动转录的启动子的来源并可以进行具体改造以提高mRNA的翻译。

转录增强子的实例包括但不限于例如Last等所述的(通过参考组合在本说明书中的美国专利No.5,290,924)来自CaMV 35S启动子和章鱼碱合酶基因的元件。当应用于植物转化这一背景中时,使用诸如ocs元件的增强子元件并且尤其是该元件的多重拷贝被认为会产生提高来自邻近启动子的转录水平的效果。另外,源自烟草花叶病毒包膜蛋白基因的Ω序列(Gallie等,1987)可以用于增强如本发明所述多核苷酸转录的mRNA的翻译。

在有些实施方式中,转录控制元件是组成型启动子。已知可用于提供组成型基因表达的序列中有与农杆菌基因相连的调控区,诸如例如胭脂碱合酶(Nos)、甘露碱合酶(Mas)或章鱼碱合酶(Ocs),以及为病毒基因的表达所编码的区域,诸如花椰菜花叶病毒(CaMV)的35S和19S区域。这里所使用的术语“组成型”并不必然意味着基因在所有细胞类型中以相同水平表达,而是该基因在大量的细胞类型中表达,虽然经常会观测到其丰度的一些变化。

在其他实施方式中,转录控制元件是组织特异性启动子。例如,出于各种原因,人们可能希望在提供糖代谢酶表达过程中将这些酶的表达局限于其功能是碳沉积的植物细胞中。照此目标,人们可以对优先在诸如根、块茎、种子或果实等具体组织类型中提供表达的有用的转录启动区进行鉴别。这些序列例如可以使用差异筛选技术从cDNA文库中识别或可以是源自文献中已知序列的。

许多组织特异性启动子区域是已知的,诸如优先在叶组织表达的核酮糖-1,5-二磷酸羧化酶-加氧酶(Rubisco)小亚基启动子,优先在马铃薯块茎中表达的马铃薯块茎蛋白启动子。优先提供在某些组织或某些生长条件下表达的其他转录起始区域包括那些来自油菜籽蛋白、种子或叶ACP、玉米蛋白等的区域。果实特异性启动子也是已知的,一个这样的启动子是Deikman等(1988,EMBO J.2:3315-3320)和DellaPenna等(1989,Plant Cell 1:53-63)所述的E8启动子。在一种此类实施方式中,E8(果实特异性启动子)蔗糖异构酶构建物能以果实特异性方式表达蔗糖异构酶,果实中所产生的蔗糖水平可以由此提高。另外,可以使用在蔗糖存储组织(如甘蔗成熟的茎以及甜菜的块茎)中选择性表达编码序列的启动子。例如,本说明书第6部分以及国际公开WO 01/18211中所述的甘蔗成熟的茎特异性启动子。

另外,所述启动子是能在所述植物的适当发育阶段推动编码酶的多核苷酸表达的诱导型启动子。在后者的实施方式中,转录控制元件合适地是控制表达时机的发育调控启动子。糖代谢酶表达的时机优先考虑植物发育过程中发生的糖浓度的变化。组织内部糖的重要性也可以随时间而改变,在这一点上,沉积组织在发育过程中可以经历蔗糖浓度的变化。例如,某些果实(如甜瓜)中蔗糖浓度随着果实的成熟而改变。发育早期积累己糖,随后在后期蔗糖高水平累积(Schaffer等,1987,Phytochemistry 26:1883-1887)。在发展中的玉米胚乳中,蔗糖浓度在授粉后提高8到12天,随后在授粉后28天下降10倍以上(Tsai等,1970,Plant Phys.46:299-306)。此外,大豆种子中随着开花53天后蜜三糖糖类含量的明显提高,蔗糖浓度在发育过程中变化显著(Amuti,1977,Phytochemistry 16:529-532)。豌豆种子中,蔗糖含量随着延续的发育阶段显著降低(Holl和Vose,Can.1980,J.Plant Sd.60:1109-1114)。这些实例说明了利用波动的蔗糖储量为酶基因定时的特异性表达选择启动子的愿望。

4.23’端非翻译区

本发明的核酸构建物可以包含3’端非翻译序列。3’端非翻译序列是指包含含有多聚腺苷信号和任何其他能影响mRNA加工或基因表达的调控信号的DNA片段的基因部分。多聚腺苷信号特征在于对mRNA前体3’末端添加多聚腺苷酸段产生影响。多聚腺苷信号通常通过存在与规范形式的5’AATAAA-3’同源性进行识别,虽然变异也很常见。

3’端非翻译的调控DNA序列通常包括约50到1000个核苷酸碱基对并除了多聚腺苷信号外还可以包含植物转录和翻译终止序列以及任何其他能影响mRNA加工或基因表达的调控信号。适当的3’端非翻译序列的例子是含根癌农杆菌(Agrobacterium tumefaciens)胭脂碱合酶(nos)基因的多聚腺苷信号(Bevan等,1983,Nucl.Acid Res.,11:369)和根癌农杆菌(Agrobacterium tumefaciens)章鱼碱合酶基因T7转录本终止子的3’端转录的非翻译区。另外,适当的3’非翻译序列可以源自诸如马铃薯或西红柿蛋白酶抑制剂I或II的3’端、大豆存储蛋白基因和豌豆核酮糖-1,5-二磷酸羧化酶小亚基(ssRUBISCO)基因等植物基因,虽然也可以使用精通本领域的人员所知的其他3’元件。另外,3’端非翻译调控序列可以重新获得,如例如通过参考组合在本说明书中的An(1987,《酶学方法》(Methodsin Enzymology),153:292)所述。

4.3任选序列

由于在转录起始位点和编码序列起始点之间所插入的DNA序列(即不翻译的前导序列)可以影响基因表达,人们也可以采用特殊的前导序列。合适的前导序列包括那些包含选出的指导外源或内源DNA序列最佳表达的序列的序列。例如,这样的前导序列包括如例如Joshi(1987,Nucl.Acid Res.,15:6643)所述能提高或保持mRNA稳定性并防止不适当的翻译起始的优选共同序列。然而,其他前导序列(例如RTBV的前导序列)具有被认为会降低mRNA稳定性并/或减少mRNA翻译的高程度的二级结构。因此,(i)不具有高度二级结构的,(ii)具有高度二级结构,其中该二级结构不抑制mRNA稳定性和/或减少翻译的,或(iii)源自植物中高表达基因的前导序列是最优选的。

在需要情况下,也可以包括诸如例如Vasil等(1989,Plant Physiol,91:5175)所述的蔗糖合酶内含子、例如Callis等(1987,Genes Develop.,IT)所述的Adh内含子I、或例如Gallie等(1989,The Plant Cell,1:301)所述的TMV Ω元件等的调控元件。其他这样的可在本发明的实践中使用的调控元件对于精通本领域的人员而言是已知的。

此外,可以采用靶向序列将由外源或异源多核苷酸所编码的酶导向至植物细胞内的胞内隔室或胞外环境。例如,编码转运或信号肽序列的核酸序列可以与编码本发明所选择的酶的序列以可操作方式相连,从而使翻译时所述的转运或信号肽可以将该酶转运至具体的胞内或胞外目的地,并随后可以任选地以翻译后方式去除。转运或信号肽通过帮助蛋白质穿过细胞内膜(例如内质网膜、液泡膜、囊泡膜、质体膜、线粒体膜和原生质膜)的转运发挥作用。例如,靶向序列可以指导所需蛋白质到达诸如液泡或质体(例如叶绿体)的具体细胞器而不是胞质。因此,本发明的核酸构建物可以进一步包含以可操作方式连接在启动子区和外源或异源多核苷酸之间的编码质体转运肽的核酸序列。例如,可以参考Heijne等(1989,Eur.J.Biochem.,180:535)以及Keegstra等(1989,Ann.Rev.Plant Physiol.PlantMol.Biol,40:471)。

在一些实施方式中,通过引入一个具有沉积组织特异性启动子和胞质定位调控序列的细菌蔗糖异构酶将存储在沉积组织细胞中的蔗糖(即内源糖)转化成异麦芽酮糖和/或海藻酮糖(即外源糖)。在这些实施方式中,本发明人为蔗糖异构酶基因的表达选择了胞质,因为它是包括中间代谢的许多成分并参与许多代谢物流动的关键细胞隔室。在其他实施方式中,本发明人选择了液泡作为蔗糖异构酶活性的定位,因为它是诸如甘蔗等植物中糖类的主要存储隔室。在还有其他实施方式中,本发明人选择将蔗糖异构酶活性分布在隔室之间以实现糖类总的积累中的最佳效果。在其他实施方式中,与感兴趣的代谢途径相适应,可以适当地将酶基因表达产物导向至诸如液泡、溶酶体、过氧物酶体、质体、线粒体、内质网、细胞核或胞外区间的其他细胞隔室。

本发明的核酸构建物可以引入诸如质粒的载体中。质粒载体包含为在原核与真核细胞中表达盒的方便的选择、扩增和转化所提供的附加核酸序列,例如pUC来源的载体、pSK来源的载体、pGEM来源载体、pSP来源载体或pBS来源载体。附加的核酸序列包括为载体的自主复制所提供的复制原点、优选地编码抗生素或除草剂抗性的选择性标记基因、为了用于插入所述核酸构建物中所编码的核酸序列或基因的多个位置所提供的唯一的多克隆位点、以及增强原核和真核(特别是植物)细胞转化的序列。

所述载体优选地包含一个或多个允许该载体稳定整合入宿主细胞基因组或不依赖于细胞基因组而允许该载体在细胞内自主复制的元件。当其引入宿主细胞时,所述载体可以整合入宿主细胞基因组。对于整合而言,载体可以依赖于其中存在的外源或异源多核苷酸序列或通过同源重组用于将载体稳定整合入基因组的任何其他载体元件。另外,载体可以包含用于指导通过同源重组整合入宿主细胞基因组的附加核酸序列。所述的附加核酸序列使载体能够在染色体中的准确位置上整合入宿主细胞基因组。为了提高在准确位置上整合的可能性,整合元件应优选地包含足够数量的与相应的靶序列高度同源的核酸(诸如100到1500碱基对,优选400到1500碱基对,并且最优选800到1500碱基对)以提高同源重组的可能性。整合元件可以是与宿主细胞基因组中的靶序列同源的任何序列。而且,整合元件可以是非编码的或编码的核酸序列。

出于克隆和亚克隆的目的,载体可以进一步包含能使载体在诸如细菌细胞的宿主细胞中自主复制的复制原点。细菌复制原点的例子是允许在大肠杆菌(E.coli)中复制的质粒pBR322、pUC19、pACYC177以及pACYC184的复制原点,以及允许在杆菌(Bacillus)中复制的pUB110、pE194、pTA1060和pAM/31的复制原点。复制原点可以具有突变以使其功能在杆菌(Bacillus)细胞中成为温度敏感型的(见例如Ehrlich,1978,Proc.Natl.Acad.Sci.USA 75:1433)。

4.4标记基因

为了方便转化株的鉴定,核酸构建物优选地包含外源或异源多肽形式或除此以外的选择性或筛选性标记产物。标记的实际选择并不是关键的,只要其与选择的植物细胞结合发挥功能(即选择性)。既然如例如美国专利No.4,399,216中所述的不相连基因的共转化也是植物转化中的一种有效方法,标记基因和感兴趣的外源或异源多肽不需要是相连的。

术语选择性或筛选性标记基因中所包括的是编码其分泌可以作为鉴别或选择转化细胞的方法进行检测的“分泌型标记”的基因。实例包括编码能通过抗体相互作用鉴别的分泌型抗原或能通过其催化活性检测的分泌型酶。分泌型蛋白包括但不限于插入细胞壁或被其捕获的蛋白质(例如包含如伸展蛋白extensin的表达单体或烟草PR-S中所发现的前导序列的蛋白质);可以通过例如ELISA检测的小的扩散性蛋白质;以及可以在胞外溶液中检测的小的活性酶(例如α-淀粉酶、β-内酰胺酶、草丁膦乙酰转移酶)。

4.1.1选择性标记

细菌选择性标记的实例是枯草芽孢杆菌(Bacillus subtilis)或地衣芽孢杆菌(Bacillus licheniformis)dal基因,或使之具有如氨苄青霉素、卡那霉素、红霉素、氯霉素或四环素抗性等抗生素抗性的标记。用于选择植物转化株的示例性选择性标记包括但不限于编码潮霉素B抗性的hyg基因;使之具有如例如Potrykus等(1985,Mol.Gen.Genet.199:183)所述的卡那霉素、巴龙霉素、G418等等抗性的新霉素磷酸转移酶(neo)基因;来自大鼠肝脏的使之具有如例如EP-A 256 223所述的除草剂来源谷胱甘肽抗性的谷胱甘肽-S-转移酶;过表达时使之具有如例如WO87/05327所述的诸如草丁膦等谷氨酰胺合酶抑制剂抗性的谷氨酰胺合酶基因;使之具有如例如EP-A 275 957所述的选择性试剂草丁膦抗性的绿棕褐链酶菌(Streptomyces viridochromogenes)乙酰转移酶基因;编码使之具有如例如Hinchee等(1988,Biotech.,6:915)所述的N-磷酸甲基甘氨酸(N-phosphonomethylglycine)耐受性的EPSPS(5-烯醇丙酮酸莽草酸-3-磷酸合酶)的基因;使之具有如例如WO91/02071所述的抗双丙氨膦抗性的bar基因;如赋于溴苯腈抗性的臭鼻克雷伯菌(Klebsiella ozaenae)bxn的腈水解酶基因(Stalker等,1988,Science,242:419);赋于甲氨蝶呤抗性的二氢叶酸还原酶(DHFR)(Thillet等,1988,J.Biol.Chem.,263:12500);赋于咪唑啉酮、磺脲或其他ALS抑制型化学品抗性的乙酰乳酸合酶基因(ALS)突变体(EP-A-154204);赋于5-甲基色氨酸抗性的突变的氨基苯甲酸酯合酶基因;或赋于除草剂抗性的茅草枯脱卤酶基因。

4.4.2筛选性标记

优选的筛选性标记包括但不限于编码已知其多种发色底物的β-葡萄糖苷酸酶(GUS)的uidA基因;编码已知其发色底物的酶的β-半乳糖苷酶基因;可以用于钙敏感型生物发光检测的水母发光蛋白基因(Prasher等,1985,Biochem.Biophys.Res.Comm.,126:1259);绿色荧光蛋白基因(Niedz等,1995,Plant Cell Reports,14:403);可以进行生物发光检测的荧光素酶(luc)基因(Ow等,1986,Science,234:856);编码已知其多种发色底物(例如,PADAC,一种发色的头孢菌素)的酶的β-内酰胺酶基因(Sutcliffe,1978,Proc.Natl.Acad.Sci.USA 75:3737);编码调节植物组织中花青苷色素(红色)产生的产物的R-位点基因(Dellaporta等,1988,《染色体结构与功能》(Chromosome Structure and Function)263-282);α-淀粉酶基因(Ikuta等,1990,Biotech.,8:241);酪氨酸酶基因(Katz等,1983,J.Gen.Microbiol,129:2703),该酶编码的酶能将酪氨酸氧化成多巴和多巴醌的酶,后者缩水形成易于检测的化合物黑色素;或xylE基因(Zukowsky等,1983,Proc.Natl.Acad.Sci.USA 80:1101),该基因编码能转化发色的儿茶酚的邻苯二酚双加氧酶。

5.将核酸构建物引入植物细胞

可以使用多种技术将核酸分子引入植物宿主细胞。存在许多本领域工作人员所熟知的植物转化技术,并且新技术还在不断出现。转化技术的具体选择应由其转化某些植物种类的效率以及实践本发明的人员对所选具体方法的经验和喜好来决定。对精通本领域的人员来说显而易见的是,只要其达到可接受水平的核酸转运,则用以将核酸构建物引入植物细胞的转化系统的具体选择不是本发明的实质性要点或对本发明的限制。Birch(1997,Annu.Rev.Plant Physiol.Plant Molec.Biol.48:297-326)提供了对改进植物转化系统实际操作的指导。

原则上,可以转化的双子叶和单子叶植物都可以通过将如本发明所述的核酸构建物引入受体细胞并生长成携带并表达如本发明所述多核苷酸的新的植物加以改造。

已经表明,使用根癌农杆菌(Agrobacterium tumefaciens)瘤诱导(Ti)质粒的T-DNA在诸如烟草、马铃薯和苜蓿等双子叶(阔叶)植物中外源或异源多核苷酸的引入和表达是可能的(参见,例如Umbeck的美国专利No.5,004,863以及国际申请PCT/US93/02480)。本发明所述的构建物可以使用含Ti质粒的根癌农杆菌(Agrobacterium tumefaciens)引入植物细胞。使用根癌农杆菌(Agrobacteriumtumefaciens)培养物作为转化工具时,最优选使用农杆菌的非致瘤株作为载体携带者使得所转化组织的正常非致瘤性分化成为可能。优选携带二元Ti质粒系统的农杆菌。这样的二元系统包括(1)具有将转移DNA(T-DNA)引入植物中所必需的毒性区域的第一个Ti质粒,以及(2)一个嵌合质粒。所述嵌合质粒包含至少一个与所转移的核酸侧邻的野生型Ti质粒T-DNA区的边界区。如例如De Framond(1983,Biotechnology,1:262)和Hoekema等,(1983,Nature,303:179)所述,二元Ti质粒系统已经表明对于转化植物细胞是有效的。除其他因素之外,这样的二元系统是优选的,因为它不要求整合入农杆菌Ti载体中。

涉及农杆菌使用的方法包括但不限于:(a)农杆菌与培养的分离原生质体共培养;(b)用农杆菌转化植物细胞或组织;或(c)用农杆菌转化种子、顶端或分生组织。

已经证明单子叶植物水稻和玉米也是易受农杆菌转化的。然而,包括燕麦、高梁、粟和黑麦在内的许多其他重要的单子叶农作物还没有成功地使用农杆菌介导的转化得以转化。然而将来可以对Ti质粒进行操作以作为用于这些其他单子叶植物的载体。此外,将Ti质粒用作模式系统,可能针对这些植物人工构建转化载体。Ti质粒也可以通过诸如微注射或单子叶原生质体和含T区域的细菌原生质球融合、随后可以整合入植物核DNA等的人工方法引入单子叶植物。

此外,基因转移可以通过农杆菌如Bechtold等(1993,C.R.Acad.Sci.Paris,316:1194)所述通过原位转化得以实现。这一方法建立在农杆菌细胞悬液的真空浸润的基础上的。

另外,嵌合构建物可以使用农杆菌的根诱导(Ri)质粒作为载体加以引入。

花椰菜花叶病毒(CaMV)也可以用作将外源核酸引入植物细胞的载体(美国专利No.4,407,956)。CaMV DNA基因组插入亲本细菌质粒形成能在细菌中繁殖的重组DNA分子。克隆以后,重组质粒可以再次克隆并进一步通过引入所需的核酸序列加以改造。重组质粒的经改造的病毒部分随后从亲本质粒上切离并用于接种植物细胞或植物。

核酸构建物也可以通过电转化引入植物细胞,例如如Fromm等(1985,Proc.Natl.Acad.Set,U.S.A,82:5824)和Shimamoto等(1989,Nature 338:274-276)所述。这一技术中,在存在含相关核酸序列的载体或核酸的条件下对植物原生质体进行电穿孔。高场强的电脉冲可逆地使膜成为通透的以允许核酸的引入。电穿孔的植物原生质体重组细胞壁、分裂并形成植物愈伤组织。

将核酸构建物引入植物细胞的另一种方法是通过含所述核酸的小颗粒高速冲击穿透(也称为微粒轰击或基因枪轰击)以将小珠或颗粒基质中或其表面所包含的核酸引入,如例如K1ein等(1987,Nature 327:70)所述。虽然通常只需要单一地引入新的核酸序列,这一方法尤其适用于多重引入。

另外,核酸构建物可以通过使用机械或化学方法与植物细胞接触引入植物细胞。例如,核酸可以通过使用微注射器通过微注射直接以机械方式转移入植物细胞。另外,核酸可以通过使用与遗传物质形成被细胞吸收的沉淀复合物的聚乙二醇转移入植物细胞。

存在着多种目前已知的用于转化单子叶植物的方法。正如例如Shimamoto等(1989,见前文)所述,目前用于单子叶植物转化的方法是外植体或细胞悬浮液的基因枪轰击、农杆菌介导的基因转移以及直接DNA摄取或电转化。已经通过将吸水链霉菌(Streptomyces hygroscopicus)bar基因经基因枪轰击引入玉米悬浮培养物的胚胎细胞中获得了转基因玉米植物(Gordon-Kamm,1990,Plant Cell,2:603-618)。已经报道了将遗传物质引入诸如小麦和大麦等其他单子叶作物的糊粉原生质体(Lee,1989,Plant Mol.Biol.13:21-30)。通过选择仅成熟紧密的结节的胚胎愈伤组织用以建立胚胎悬浮培养物,已经从胚胎悬浮培养物再生了小麦植物(Vasil,1990,Bio/Technol.8:429-434)。与用于这些作物的转化系统相结合能使本发明应用于单子叶植物。这些方法也可以用于双子叶植物的转化和再生。如例如Bower等(1996,Molecular Breeding 2:239-249)所述,以及从胚胎愈伤组织再生了转基因甘蔗植物。

另外,不同技术的组合可以用于增强转化过程的效率,例如用农杆菌包被微粒的轰击(EP-A-486234)或基因枪导致创伤随后与农杆菌共同培养(EP-A-486233)。

本发明优选的植物是为其产生的例如用作食物、饲料、发酵或工业原料等等的包括可溶性碳水化合物在内的有价值的物质而培育或收获的植物种类。这样的植物种类的例子包括糖作物(诸如甘蔗、甜菜、甜高粱和菊苣),水果(诸如葡萄、柑桔、仁果类水果、核果和坚果),为其叶、茎、根、块茎、果实、荚果或种子而收获的蔬菜以及牧草。

6.本发明的启动子序列

本发明也提供了用于植物中、尤其是单子叶植物中、更尤其是在草本单子叶植物中,嵌合或异源基因茎特异表达的启动子序列,这包括SEQ ID NO:10中所示的序列。这一启动子序列在这里也称为P67B启动子。本发明也设计了SEQ ID NO:10的生物学活性部分及其多核苷酸序列变体。精通本领域的人员应当理解,当与具体基因融合并引入植物细胞时,生物学活性片段或启动子序列片段会引起该基因以比不存在这样的片段的情况下可能的水平更高的水平表达。如本发明所述的启动子中可以包括一个或更多生物学活性部分,例如一个或多个基序可以与“最小”启动子相连。这样的基序可以赋于一个启动子P67B启动子的功能,诸如适合于在单子叶植物尤其是草本单子叶植物的茎中性能增强,其说明性实例包括甘蔗、水稻、小麦、高梁、大麦、黑麦、玉米等等。

启动子的活性可以通过本领域内所熟知的方法确定。例如,通过评估从启动子转录所产生的mRNA量或通过评估从启动子转录所产生的mRNA的翻译所产生的蛋白质产物的量可以对启动子活性水平加以定量。表达系统中具体mRNA所存在的量可以通过例如使用能与该mRNA杂交并标记的特殊寡核苷酸加以确定或可以在诸如PCR等具体扩增反应中使用。通过参考蛋白质的产生,报道基因的使用有助于启动子活性的确定。Medberry等(1992,Plant Cell 4:185;1993,ThePlant J.3:619),Sambrook等(1989,见前文)和McPherson等(美国专利No.5,164,316)公开了用于评价启动子活性的非限制性方法。

本发明也设计了与本发明的标准启动子充分互补的启动子变体。通常,这些启动子变体应包含与相同大小“比较窗口”的标准多核苷酸序列或与其中对齐排列由本领域已知的计算机同源程序所进行的对准的序列相比具有适当地至少90、91、92、93、94、95、96、97、98或99%序列相同性。通过常规技术可以确定由什么组成合适的变体。例如,按照精通本领域的人员所熟知的常规方法,通过使用预先制备的如本发明所述的分离的天然启动子的变体或非变体形式的随机突变(例如转位子突变)、寡核苷酸介导的(或定点)突变、PCR突变和盒式突变,可以对如SEQ IDNO:10所述的多核苷酸进行突变。另外,启动子变体可以按照以下步骤进行制备:

(a)从适当的生物体(合适地是单子叶植物,优选如甘蔗的草本单子叶植物)中获得核酸提取物;

(b)设计与本发明所述标准启动子序列的至少一部分侧面相邻的引物;以及

(c)使用该引物通过核酸扩增技术由所述核酸提取物扩增至少一种扩增产物,其中所述扩增产物对应于本发明所述的启动子变体。

合适的核酸扩增技术是精通本领域的人员所熟知的,包括如例如Ausubel等(见前文)所述的聚合酶链式反应(PCR);如例如美国专利No 5,422,252中所述的链置换扩增(SDA);如例如Liu等(1996,J.Am.Chem.Soc.118:1587-1594以及国际申请WO 92/01813)和Lizardi等(国际申请WO 97/19193)所述的滚环复制技术(RCR);如例如Sooknanan等(1994,Biotechniques 17:1077-1080)所述的基于核酸序列的扩增技术(NASBA);以及如例如Tyagi等(1996,Proc.Natl.Acad.Sci.USA93:5395-5400)所述的Q-β复制酶扩增技术。

7.本发明所述启动子的应用

除了其他用途以外,本发明所述的分离的启动子序列可以用于推动外源或内源DNA序列的表达。外源或内源DNA序列可以包含转录成调节相应的靶基因表达的RNA分子的区域。这样的表达调节可以通过例如本领域内所知的反义技术、核酶技术和共抑制或同源依赖性基因剪切等得以实现。因此,所述转录本可以包含反义RNA分子、或核酶或其他旨在下调相应靶基因表达的其他转录本(诸如例如下文所提及的反向重复序列以及双链RNA)。

因此,在有些实施方式中,所述转录本是通过与mRNA结合并防止蛋白翻译直接阻碍由靶基因转录的mRNA的翻译的反义RNA分子。在采用时,反义RNA长度应当至少约10-20个核苷酸或更长,并与其靶基因或基因转录本至少约75%互补以避免所针对的同源序列的表达。

在其他实施方式中,所述转录本是功能在于抑制靶基因mRNA翻译的核酶。核酶是能催化RNA特异性裂解的具有酶活性的RNA分子。核酶作用机制涉及核酶分子与互补靶RNA的序列特异性杂交和随后的内切核苷酸裂解。本发明范围内包括所设计的特异性并高效催化靶基因RNA序列的内切核苷酸裂解的锤头状基序核酶分子。任何潜在RNA目标内的特异性核酶裂解位点最初通过对靶分子进行包括以下序列GUA、GUU和GUC的核酶裂解位点扫描进行识别。一旦识别,可以将对应于含裂解位点的靶基因区域的15到20个核糖核苷酸的短RNA序列对诸如可能造成该寡核苷酸序列不适合的二级结构等预测的结构特征进行评估。在使用时,核酶可以从含锤头状核酶、斧头状核酶、蝾螈卫星状核酶、四膜虫状核酶和RNAse P构成的组中选择并按照本领域内已知的方法在靶基因序列基础上进行设计(例如,参见美国专利No.5,741,679)。侯选目标的合适性也可以通过使用核糖核酸酶保护检测法测试其与互补寡核苷酸杂交的可达性进行评价。

在其他实施方式中,所述转录本是介导靶基因或基因转录本RNA干扰(RNAi)的RNA分子。RNA干扰是指通过引入与靶基因转录本同源的单链、并通常双链的RNA(dsRNA)对靶基因的产物进行干扰和破坏。因此,在有些实施方式中,对应于靶基因至少一部分的本质上双链RNA尤其是产生dsRNA的构建物可以用于降低其水平和/或功能活性。RNAi-介导的基因表达抑制可以通过使用本领域所报道的技术完成,例如通过编码茎-环或发夹RNA结构的核酸构建物转染进入靶细胞基因组,或通过从收敛的启动子之间表达具有与靶基因同源性的转染的核酸构建物,或作为单一启动子后反向重复的形式。可以使用任何相似的构建物,只要其产生具有自身折叠并生成双链RNA能力的单一RNA,或只要其产生两个单独RNA转录本随后退火形成与靶基因具有同源性的双链RNA。

RNAi不要求绝对的同源性,就约200个碱基对的dsRNA描述了约85%同源性的较低的临界值(Plasterk和Ketting,2000,Current Opinion in Genetics andDev.10:562-67)。因此,取决于dsRNA的长度,RNAi编码核酸可以在其对于靶基因转录本的同源水平上有所变化,即对于100到200碱基对的dsRNA与靶基因具有至少约85%的同源性,更长的即300到1000碱基对的RNAi与靶基因具有至少约75%同源性。表达设计成与单独表达的RNA退火的单一RNA转录本的RNA编码构建物,或从收敛的启动子表达单独转录本的单一构建物,其优选长度至少约100个核苷酸。表达设计成经内部折叠形成dsRNA的RNA编码构建物优选长度至少约200个核苷酸。

如果最终的dsRNA对于破坏靶细胞谱系中的基因产物是特异的,用于表达所述dsRNA形成构建物的启动子可以是任何类型的启动子。另外,启动子可以是谱系特异的,其只在特殊发育谱系的细胞中表达。这在与非目标细胞谱系中表达的基因观察到一些同源性重叠的情况下是有利的。所述启动子也可以是通过外界控制因素或通过细胞内环境因素诱导的。

在另一种实施方式中,指导具体mRNA裂解成其所对应的约21到约23个核苷酸的RNA分子(如例如Tuschl等的美国专利申请No.20020086356中所述的)可以用于介导RNA干扰。这样的21-23个核苷酸的RNA分子可以包括3’羟基,可以是单链或双链的(2条21-23核苷酸的RNA形式),其中dsRNA分子可以是平末端的或包含粘性末端的(例如5’、3’)。

在其他实施方式中,外源或内源DNA序列编码:可检测或可测量的产物,例如β-葡萄糖苷酸酶或荧光素酶;选择性产物,例如使之具有氨基糖苷抗生素(如Geneticin和巴龙霉素)抗性的新酶素磷酸转移酶(nptII);使之具有除草剂耐受性的产物,例如草甘膦抗性或草铵膦抗性;影响淀粉生物合成或改造的产物,例如淀粉分枝酶、淀粉合酶、ADP-葡萄糖焦磷酸化酶;参与脂肪酸生物合成的产物,例如去饱和酶或羟化酶;使之具有昆虫抗性的产物,例如苏芸金杆菌(Bacillusthuringiensis)晶体毒素蛋白;使之具有病毒抗性的产物,例如病毒包膜蛋白;使之具有真菌抗性的基因,例如几丁质酶、β-1,3-葡聚糖酶或植物抗毒素(phytoalexin);改变蔗糖代谢的产物,例如转化酶或蔗糖合酶;编码有价值的药品的基因,例如抗生素、次级代谢物、药用肽或疫苗。

所述外源或内源DNA序列包括但不限于来自植物基因以及诸如来自细菌、酵母、动物或病毒的非植物基因的DNA。此外,本发明的范围包括了从具体的植物基因型中分离外源或内源DNA序列,以及随后将该序列的多拷贝引入相同的基因型,例如用以提高具体基因产物的产量。所引入的DNA可以包括经改造的基因、基因的部分或嵌合基因,这包括来自相同或不同植物基因型的基因。

所述外源或内源DNA序列所编码的示例性的农艺学性质包括但不限于:诸如对缺水的抗性、病虫害抗性或耐受性、除草剂抗性或耐受性、疾病抗性或耐受性(例如对病毒或真菌病原体的抗性)、应激耐受性(盐升高耐受性)以及提高食物含量或增加产量等对栽培者有益的特性;诸如提高人的食物或动物饲料中的营养含量等对从植物中所收获的园艺产品的消费者有益的特性;或诸如改善的处理特性等对食物处理者有益的特性。在这样的应用中,通常为了在包括部分用作动物饲料在内的人或动物食物中使用其谷粒、果实或其他植物部分(包括秆、壳、营养部分等等)或为了观赏目的而栽培含本发明所述启动子的转基因植物。经常,为了食物或工业应用而提取作物的化学成分,并且可以建立具有提高的或改变的这样的成分水平的转基因植物。

本发明所述分离的启动子序列也可以用于蛋白质或其他化合物的商业化生产,其中从植物部分、种子等等中提取或纯化感兴趣的化合物。这样的蛋白质或化合物包括但不限于疫苗中使用的免疫原性分子、细胞因子和激素。植物细胞或组织也可以体外培养、生长,或发酵以生产这样的分子。

含本发明所述分离的启动子的转基因植物也可以用于商业化育种计划,或可以与相关作物种类的植物杂交或育种。外源或内源DNA序列所编码的改良可以得以转移,例如从一种植物细胞转移到另一种植物细胞,通过例如原生质体融合。

含本发明所述分离的启动子的转基因植物在研究和育种中可能具有许多用途,包括为了鉴别随后可以通过传统突变与选择建立的有益突变体而通过插入突变创造新的突变植物。一个例子可以是编码可以用于产生遗传变体的可换位元件的重组DNA序列的引入或是引入可以用于鉴别专利品系或品种的独特的“签名序列”或其他标记序列。

8.分化的转基因植物的产生及其性质描述

8.1再生

对于本发明而言,用于将转化细胞再生成分化的植物的方法不是关键的,可以使用任何适合于目标植物的方法。通常,在转化过程之后植物细胞再生以获得完整的植物。

植物不同种类之间由原生质体的再生各有不同,但通常首先制备原生质体悬浮液。在某些种类中,随后可以由原生质体悬浮液诱导胚胎形成至成熟阶段并以天然胚胎形式发芽。培养基通常应包含生长和再生所必需的各种氨基酸和激素。使用的激素的实例包括植物生长素和细胞分裂素。有时优选向培养基中添加谷氨酸和脯氨酸,特别是针对象玉米和苜蓿这样的物种。有效再生将取决于培养基、基因型以及培养史。如果这些变量是受控的,再生是可繁殖的。再生也从植物愈伤组织、外植体、器官或部分发生。如例如《酶学方法》(Methods in Enzymology)118卷和Klee等(1987,Annual Review of Plant Physiology,38:467)(通过参考结合在本说明书中)所述,转化可以在器官或植物部分再生体的情况下进行。当使用Horsch等(1985,Science,227:1229,通过参考结合在本说明书中)所述的叶盘-转化-再生方法时,叶盘在选择性培养基中培养,随后在约2到4周内形成嫩芽。形成的芽从愈伤组织切离并移植到适当的根诱导选择性培养基中。根出现后尽快将有根的幼苗移植到土壤中。幼苗可以按需要移植直到达到成熟。

在无性生殖方式繁殖的作物中,成熟的转基因植物通过插条的滑石粉处理(taking of cuttings)或通过组织培养技术以产生多个相同植物的方法进行繁殖。针对商业使用,挑选所需的转化株、获得并通过无性生殖的方式繁殖新的品种。

在通过种子繁殖的作物中,成熟的转基因植物可以自身杂交以产生纯合子的近交植物。近交植物产生含新引入外源基因的种子。这些种子可以培育产生会产生所选表型(例如早开花的)的植物。

本发明包括了从所述的再生植物所获得的部分,诸如花、种子、叶、枝条、果实等等,如果这些部分包含了已经如上所述转化的细胞。本发明的范围内也包括所述再生植物的后代、变体和突变体,如果这些部分包含所引入的核酸序列。

应当认识到,文献描述了众多用于再生具体植物种类的技术并且更多的技术正不断出现。本领域一般技术人员可以参考文献了解细节并选择适当的技术而避免过度的实验。

性质描述

可以使用各种检测方法以验证在所述再生植物中存在所述外源或异源多核苷酸。这样的检测方法包括,例如精通本领域的人员所熟知的“分子生物学”检测方法,诸如Southern和Northern印迹以及PCR;测定糖代谢酶活性的检测方法;以及检测或定量该酶表达的免疫学检测方法。在证实植物中所需酶的表达之后,对该植物进行栽培。可以栽培2代或更多代以保证所述表型特征是稳定保持并遗传的。

为了鉴别所需的表型特征,包含并表达具体糖代谢酶转基因的转基因植物与对照植物进行比较。合适地,通过测量所选沉积组织中的酶活性(例如来自块茎、果实和/或根的)对转基因植物进行挑选。所述糖代谢酶活性可以周期性地从贯穿衰老的各个生长阶段中测量并与对照植物的酶活性比较。挑选在一个或多个周期中与对照植物相比具有提高或降低的酶活性的植物或植物部分。所述活性可以与包括酶类型、转录控制元件类型、翻译启动类型、终止区域类型、转基因拷贝数、转基因插入和排列在内的一个或更多其他特性相比较。

在评价与酶活相连的表型特征时,转基因植物和对照植物优选地在培育房、温室、开盖培育房和/或野外条件下培育。具体表型特征的鉴别和与对照的比较建立在常规统计学分析和得分的基础上。植物品系之间的统计学差异可以通过比较植物品系之间表达该酶的每个组织类型中的糖代谢酶活性进行评估。表达与活性同包括植物部分形态学、颜色、数量、大小、尺寸、干重和湿重、成熟度、地上和地下生物量比例在内的生长、发育以及产量参数,和贯穿衰老的生长各个阶段(包括植物性成长、结实、开花)的时间控制、速度以及持续时间,以及包括蔗糖、葡萄糖、果糖和淀粉水平以及其他内源糖水平技外源糖水平在内的可溶性碳水化合物含量相比较。为了鉴别具有其他特性的转基因,可以检测所述植物的光合作用和代谢活性以及目标产物的合成。例如,按照常规实验方案对从转基因植物分离的材料和诸如块茎、果实和根等植物部分的诸如淀粉、蔗糖、葡萄糖、果糖、糖醇以及其他内源糖和外源糖等目标产物进行检测。也可以检测基于糖含量尤其是果糖和蔗糖含量的甜度。对有些植物来说,可能需要改变生长条件以观察到表型效果。例如,在一个通气的培养箱系统中可以对氧、二氧化碳和光照进行控制和测量,并且通过C14标记的二氧化碳或其他代谢底物检测碳分配。也可以在果实、叶和/或根的提取物中通过色谱技术或使用糖折射计的白利糖度(Brix)测定碳分配。这些特征也可以与生长条件比较或受生长条件诱导,每种生长条件内品系之间在气体交换参数、光照数量和质量、温度、底物量及湿度等方面有所变化。

9.发酵产物的产生

本发明所述转基因植物所产生的可溶性碳水化合物会包含可发酵的碳水化合物,它们随后可以用作生产乙醇和含乙醇饮料以及其他诸如食品、营养品、酶和工业材料等发酵产物的发酵原料。使用植物来源碳水化合物原料的发酵方法对于精通本领域的人员而言是熟知的,并对各种发酵产品具有确定的方法(参见例如Vogel等1996年所著《发酵及生化工程手册:原理、过程设计及装备》(Fermentation andBiochemical Engineering Handbook:Principles,Process Design,andEquipment),Noyes出版社,Park Ridge,N.J.,USA以及该书所引用的参考文献)。在一种实施方式中,可以通过碾压植物、或通过从植物组织扩散到水或其他适当溶剂中提取可溶性碳水化合物。所获得的含可溶性碳水化合物的植物汁或提取物可以在分批补料、连续补料或固定化细胞方法中直接用作发酵或生物转化的底物。另外,部分可溶性碳水化合物可以回收作其他用途并且未回收的成分用作发酵原料,如通过结晶将大部分蔗糖回收之后剩余的糖浆的情况。

为了使本发明易于理解并产生实际效果,现在将通过以下非限制性实施例对特别优选的实施方式进行描述。

                           实施例

实施例1

三个蔗糖异构酶基因在大肠杆菌中的表达

Birch和Wu(2002)描述了蔗糖异构酶UQErw(大黄欧文氏菌,Erwiniarhapontici)、UQ14S和UQ68J的序列。为了将所述三个蔗糖异构酶(SI)基因亚克隆入表达载体pET24b(Novagen)设计了三对引物。通过PCR删除了非编码区和前导序列并加入了人工起始密码子。

每条正向引物:1)包含一个起始密码子,2)为翻译起始建立了类似植物的环境,3)为便于克隆并与基因的开放阅读框配合,加入了一个BamHI限制性位点。每条反向引物结合了一个KpnI限制性位点并包含一个终止密码子。

引物序列展示在以下表1中。

表1

 UQErw正向:  5’-gga tcc aac aat ggc aac cgt tca gca atc aaa tg-3’[SEQ ID NO:1] UQ14S正向:  5’-gga tcc aac aat ggc aac cgt tca caa gga aag tg-3’[SEQ ED NO:2] UQ68J正向:  5’-gga tcc aac aat ggc aac gaa tat aca aaa gtc c-3’[SEQ ID NO:3] UQErw反向:  5’-ata ggt acc tta ctt aaa cgc gtg gat g-3’[SEQ ID NO:4] UQ14S反向:  5’-ata ggt acc tta ccg cag ctt ata cac acc-3’[SEQ ID NO:5] UQ68J反向:  5’-ata ggt acc tca gtt cag ctt ata gat ccc-3’[SEQ ID NO:6]

PCR使用了高保真DNA聚合酶pfu(Stratagene)。使用TOPOTMTA Cloning试剂盒(Invitrogen)将PCR产物直接克隆入载体pCR2.1。切下pCR2.1载体中的所述3个蔗糖异构酶并将其克隆入pGEM-3Zf(+),随后克隆入pET 24b(Novagen)用于在大肠杆菌BL21(DE3)菌株中的表达。

实施例2

大肠杆菌中表达的蔗糖异构酶将蔗糖转化成异麦芽酮糖的转化效率

将BL21(DE3)中每个SI构建物(实施例1)的15个培养物放置在含50μg/mL卡那霉素的5毫升LB培养基中。细胞在37℃225rpm振荡培养。选择OD6001.000±0.005的每个构建物的6到10个培养物进一步诱导。从每个培养物取0.5毫升样品后,向培养物添加终浓度1.0mM的IPTG。培养物继续孵育另外3小时。进一步选择只有OD600达到1.750±0.005的诱导的培养物用于对蔗糖转化成异麦芽酮糖的转化效率的定量,这允许对每个构建物的3个重复培养物进行分析。

1.0毫升试样量的每个培养物进行离心,随后沉淀在0.4毫升用35.8mM柠檬酸钠和128.4mM磷酸钠缓冲的(pH 6.0)50%蔗糖溶液中重悬浮。悬浮液37℃225rpm振荡孵育48小时。通过如下所述的CE分析(实施例12和13)针对异麦芽酮糖进行反应检测。使用Beckman P/ACE 5000系列CE System的软件,用异麦芽酮糖/(异麦芽酮糖+蔗糖)×100表示的转化效率由对已知浓度的标准品标准化的蔗糖峰面积和异麦芽酮糖峰面积进行计算。

实施例3

构建用于受Ubi启动子驱动而表达靶向胞质的SI基因的DNA(pU3ZErw、pU3Z14S或pU3Z68J)

使用来自玉米ubi-l基因的Ubi启动子(Christensen和Quail,1996,Transgen.Res.5,213-218)。为了在甘蔗细胞中的细胞质基因表达,在质粒载体pU3Z中Ubi启动子和农杆菌nos多聚腺苷酸区域(Bevan等,1983,Nature 304,184-187)之间进一步克隆来自pET24b载体(实施例1)的不同SI基因的插入序列,以构建pU3ZErw、pU3Z14S或pU3Z68J质粒。

实施例4

构建包含或不包含6×His标记的受启动子Ubi驱动的具有ER前导肽、N端原肽(NTPP)液泡导向信号以及UQ68J SI的DNA(pU3ZERsN68J或pU3ZERsN68J-His)

载体制备

具有Ubi启动子、21个氨基酸sporamin ER前导肽、16个氨基酸sporamin NTPP液泡导向信号肽、MGUS报道基因以及农杆菌nos多聚腺苷酸区域的载体(Gnanasambandam和Birch,2004)用限制性酶NcoI和SacI部分消化,并将所获得的含具有Ubi启动子、ER前导肽和NTPP的载体骨架的片段通过凝胶电泳纯化。

通过PCR的插入片段制备

为了扩增不含周质前导序列的UQ68J SI基因,设计了含5’BglII限制性位点的正向引物(gta gat ctC GCA ACG AAT ATA CAA AAG TCC G)、含5’SacI限制性位点的反向引物(aag agc TCA GTT CAG CTT ATA GAT CCC)以及含5’SacI限制性位点的His标记标记的反向引物(aag agc TCA GTG GTG GTG GTG GTG GTG GTT CAGCTT ATA GAT CCC)。将pET24b中的UQ68J SI基因作为DNA模板。PCR反应中使用了高保真pfu DNA聚合酶(Stratagene)以及所述正向引物和一条所述反向引物。使用TOPOTM TA Cloning试剂盒(Invitrogen)将PCR产物直接克隆入载体pCR2.1。插入片段从pCR2.1载体的BglII和SacI位点切下并用凝胶电泳纯化。

接头制备

设计了正向单链寡核苷酸(GAT Ggt cga aac tcc agt a)和反向单链寡核苷酸(ca gct ttg agg tca tCA TG)以与NcoI和BglII突出形成接头。含500μM每种寡核苷酸的5微升混合液95℃加热5分钟随后在3小时内冷却至室温。

连接和转化

载体、插入片段和接头连接并转化大肠杆菌Top 10感受态细胞(Invitrogen)。

实施例5

构建包含或不包含6×His标记的受启动子Ubi驱动的具有ER前导肽、UQ68J SI以及C端原肽(CTPP)信号的DNA(pU3ZERc68JC或pU3ZERc68JC-His)

CTPP结尾的UQ68J SI基因的插入片段制备

为了扩增不含周质前导序列的UQ68J SI基因,设计了含BglII限制性位点(gtagat ctC GCA ACG AAT ATA CAA AAG TCC G)的正向引物、含SacI限制性位点包含21bp编码7个氨基酸(GLLVDTM)的液泡导向信号的反向引物(g agc TCA CAT AGT ATCGAC TAA GAG ACC GTT CAG CTT ATA GAT CC)以及编码His标记标记的GLLVDTM含SacI限制性位点(g agc TCA GTG GTG GTG GTG GTG GTG CAT AGT ATC GAC TAA GAGACC GTT CAG CTT ATA GAT CC)的反向引物。将pET24b中的UQ68J SI基因作为DNA模板。PCR反应中使用了高保真pfu DNA聚合酶(Stratagene)以及所述正向引物和一条所述反向引物。使用TOPOTM TA Cloning试剂盒(Invitrogen)将PCR产物直接克隆入载体pCR2.1。插入片段从pCR2.1载体的BglII和SacI位点切下并用凝胶电泳纯化。

通过PCR制备ER前导肽并插入pSE420以产生中间载体

基于烟草几丁质酶ER前导肽的DNA序列,设计了含BamHI位点的正向引物(aaggat ccA ATG AGG CTT TGA AAA)和含BglII限制性位点的反向引物(aaa gat ctC GCCGAG GCA GAA AGC AG)。使用了高保真Pfu DNA聚合酶(Stratagene)和作为模板的pER-RGUS-CTPP(Gnanasambandam和Birch,2004)扩增编码23个氨基酸的ER前导元件的DNA。PCR产物通过乙醇沉淀纯化,用BamHI和BglII消化,用小牛肠碱性磷酸酶处理并用1.5%琼脂糖凝胶电泳纯化。产物连接到载体pSE420(Invitrogen)的BamHI和BglII位点,并且通过DNA测序证实插入片段的所需朝向。所获得的质粒进一步用BglII和SacI消化,并回收最大的片段作为用于UQ68J SI基因插入的中间体。

UQ68J SI与CTPP连接入pSE420-ER中间载体以及转化

将CTPP结尾的68J SI连入中间载体ER前导肽下游。连接产物转入Top10(Invitrogen)感受态细胞。获得的质粒用限制性酶BamHI和SacI消化并回收插入片段用于连接。

含启动子Ubi和农杆菌nos多聚腺苷酸区的pU3Z载体的制备

用限制性酶BamHI和SacI消化载体pU3Z68J(实施例3)。回收含启动子Ubi和农杆菌nos多聚腺苷酸区的载体骨架片段用以连接。

包含编码ER前导肽、UQ68J和CTPP的片段的插入序列连接入pU3Z载体及转化

来自中间载体的ER-68J-CTPP片段连接入pU3Z载体BamHI和SacI位点之间。连接产物转入Top10感受态细胞。

实施例6

构建受启动子Ubi驱动的具有ER前导肽、NTPP液泡导向信号、UQ68J SI和CTPP信号的DNA(pU3ZERsN68JC)

载体制备

实施例4中所制备的质粒构建物pU3ZERsN68J用BglII和SacI消化。回收含载体骨架、ER前导、NTPP和农杆菌nos多聚腺苷酸区的片段用于连接。

插入片段制备

实施例5中所制备的质粒构建物pU3ZERc68JC用BglII和SacI消化。回收CTPP结尾的UQ68J SI基因片段用于连接。

连接与转化

上述载体和插入片段连接并转入Top 10感受态细胞。

实施例7

甘蔗茎特异性启动子67B的克隆

基于甘蔗茎特异性启动子P67的DNA序列(Birch和Potier,2000),设计了含SacI限制性位点的正向引物(tgg agc tcg atg gga ggt gct cg)和含BamHI限制性位点的反向引物(atg gat cct gta cta gtt atg gca gct ac)用以通过使用甘蔗栽培品种Q117的基因组DNA作为模板扩增可能的启动子同源物。总基因组DNA从早期的Q117叶片中按照对Wu等(2000,Plant Journal,22:495-502)所述方法稍作改动进行分离。简言之,2克叶片在液氮中磨碎。冻结的粉末在14毫升抽提缓冲液(1.4M NaCl、20mM EDTA、0.1M Tris-HCl,pH 8.0,3%CTAB以及1%2-巯基乙醇)中65℃悬浮30分钟。添加等体积氯仿∶异戊醇(24∶1)、混合、随后4℃10000g离心10分钟。水相层与等体积异丙醇混合,并且通过4℃15000g离心15分钟沉淀DNA。所述沉淀用70%乙醇清洗,简单地干燥以去除残留的乙醇,并溶解在TE缓冲液中。使用高保真DNA聚合酶pfu(Strategene)三次独立扩增的产物通过使用TOPOTM TA Cloning试剂盒(Invitrogen)直接克隆入载体pCR2.1。对来自15个转化的细菌菌落的质粒DNA进行分离和测序。测序结果说明,15个菌落中的5个具有不同于Birch和Potier(2000)所分离的P67序列的相同序列。Birch和Potier(2000)所分离的序列因此命名为启动子67A。这里所展示的附加序列命名为启动子67B。

实施例8

构建受启动子67B驱动的具有GUS报道基因的DNA(p67BGUS)

含插入片段的质粒pCR2.1(实施例7中所制备)用BamHI和SacI消化以释放启动子67B,它用来替代质粒p67AGUS(Birch和Potier(2000))中的启动子67A。

实施例9

构建受启动子67B驱动的含UQ68J SI基因的DNA

插入片段构建

从实施例1中所述的pCR2.1中间体的BamHI和KpnI位点上切下UQ68J SI基因并回收用于连接。

含启动子67B、多克隆位点和农杆菌nos多聚腺苷酸区的载体的制备

(i)来自实施例7的启动子67B插入载体pSE420(Invitrogen)中的BaMHI和SacI位点,随后在BamHI和HindIII位点之间切下用于连接。(ii)农杆菌nos多聚腺苷酸区从载体pBI101(Clontech)的SacI和EcoRI位点释放并插入载体pGEM3Zf(+)中的相同位点。(iii)来自(i)的P67B序列插入来自(ii)的中间载体的BamHI和HindIII位点。所获得的含pGEM3Zf(+)骨架、启动子67B、多克隆位点和农杆菌nos多聚腺苷酸区的载体用BamHI和KpnI消化并回收用以连接。

连接和转化

UQ68J SI基因连接在中间载体中的启动子67B和多聚腺苷酸区之间以形成转入Top 10感受态细胞的完整p67B68J。

实施例10

构建受启动子67A驱动的含UQ68J SI基因的DNA(p67A68J)

通过PCR制备启动子67A

正向与反向引物与实施例7中克隆启动子68B的引物相同。p67AGUS中的67A启动子用作DNA模板。PCR反应中使用了高保真pfu DNA聚合酶(Stratagene)。使用TOPOTMTA Cloning试剂盒(Invitrogen)将PCR产物直接克隆进pCR2.1载体。启动子67A从pCR2.1载体BamHI和SacI位点切离并回收用于连接。

通过消化制备含载体骨架的SI基因

用BamHI和SacI部分消化实施例9中制备的质粒p67B68J。回收包含具有UQ68JSI基因和农杆菌nos多聚腺苷酸区的载体骨架的片段用于连接。

连接与转化

启动子67A连接在载体中UQ68J SI基因上游。连接产物转化Top 10感受态细胞。

实施例11

微粒轰击

通过碱抽提分离含SI基因的质粒(pU3ZErw、pU3Z14S、pU3Z68J、pUERsN68J、pUERsN68J-His、pUERc68JC、pUERc68JC-His、pUERsN68JC、p67A68J或p67B68J)和aphA构建物pEmuKN(作为选择标记)并将其溶于TE缓冲液。通过凝胶电泳检查质粒的完整性和不含基因组DNA或RNA,并通过分光光度法测量其浓度。

基本上如以前所述(Bower等,1996;Birch,2000),Ubi-蔗糖异构酶(UbiSI)基因构建物及选择标记构建物共同沉淀在钨微粒上并引入甘蔗愈伤组织,随后挑选转化的愈伤组织并再生转基因植物。

沉淀反应通过4℃依次向1.5mL的微离心管内加入以下物质进行:5微升pEmuKN质粒DNA(1毫克/毫升)、5微升UbiSI质粒DNA(1微克/微升)、50微升钨微粒(Bio-Rad M10,100微克/微升)、50微升CaCl2(2.5M)、20微升亚精胺(100mM游离碱)。添加每种试剂后立即混合所述制剂,在添加CaCl2和亚精胺之间避免耽搁。随后钨微粒在冰上沉淀5分钟,然后去除100微升上清液并通过试管底部来回穿越试管架将钨微粒重悬。悬浮液以每次轰击4微升的载样量在15分钟内使用,并在每次取样前重悬微粒。假设所述反应中所有DNA得以沉淀,这相当于在每次轰击667微克钨微粒基础上每次轰击1.3微克DNA。

将来自甘蔗栽培品种Q117的胚胎形成愈伤组织用于轰击。微粒在真空盒中经注射滤器固定器通过直接夹带在氦气脉冲中进行加速进入目标愈伤组织。该组织在轰击前和轰击后置于渗透性条件下4小时。在不含抗生素的固体培养基上恢复48小时后,经轰击的愈伤组织转入含45毫克/升Geneticin的培养基中进行选择、愈伤组织发育以及植物再生。

实施例12

甘蔗生长条件及生长速率检测

在密封的暖房中在天然光照强度下,将甘蔗栽培品种Q117及其表达SI基因的转基因品系在20厘米直径的含UC盆栽混合物B(1米-1沙、0.5米-1泥炭和12.45千克含重量比12份“血和骨”(blood and bone):2份硝酸钾:1份硫酸钾:12份过磷酸盐:20份白云石:12份含水石灰:6份石膏肥料:2.4份micromax肥料的肥料混合物)的盆中28℃培养,每天浇水两次。对于由愈伤组织再生的(第一代无性世代)或由随后的茎插条培育的(第二和第三代无性世代)植物,每盆只培育一条茎。对于截根苗植物,在盆表面切除先前生长的茎之后,允许从土表下的芽生长两条茎而不做移植(也产生第二和第三代无性世代)。每盆植物在第一和第二个月每月用5克Osmocote施肥,然后每月施肥10克。最初3个月每月记录高度(从盆表面到顶端明显的垂叶)、茎直径(土表上第一节间)、节数(计算包在叶腋内节并将顶端明显的垂叶作为第1节)以及鲜重,随后每两周记录一次。

实施例13

毛细管电泳样品制备

为了去除离子材料,将培养物上清液和植物组织提取物通过强阳离子和阴离子交换柱(Varian Bond Elut-SCX和SAX)。使用注射器推动样品和清洗液经过层析柱。

层析柱通过用1倍体积的甲醇随后用1倍体积的水进行预处理。细菌培养物上清液(来自实施例2)用无菌的Milli-Q(SMQ)水稀释150倍,然后1毫升稀释的上清液流经SAX和SCX柱并将未吸附的洗脱液收集在1.5毫升的试管中。

实施例14

毛细管电泳

通过高效毛细管电泳的分离在Beckman P/ACE 5000 Series CE System中进行,使用254纳米处的吸光率进行样品检测。毛细管是内径50微米外径363微米的中空熔凝二氧化硅(Supelco目录号70550-U)。毛细管全厂77厘米,并且69厘米插入检测窗口。毛细管检测窗口通过用火柴烧落毛细管表面涂层并用甲醇擦拭进行制造。

使用碱性硫酸铜电解缓冲液(EB,由6mM硫酸铜(II价)和500mM氨水组成,pH 11.6)溶解蔗糖和异麦芽酮糖以及认为存在于细胞提取物总的包括葡萄糖和果糖在内的其他糖类。碱性条件下糖与铜(II价)的螯合反应有利于中性糖的分离和直接紫外检测。每天开始时制备新鲜的EB并在使用前真空除气15分钟。

为了达到迁移时间的最大可重复性,每天在使用前对毛细管按照以下清洗步骤进行处理:水洗2分钟,0.1M盐酸洗10分钟,水洗2分钟,0.1M NaOH洗10分钟,水洗2分钟,0.5M氨水洗15分钟并水洗2分钟。所有溶液溶解/稀释在SMQ水中并经0.45微米微孔过滤器过滤。毛细管然后在第一个样品之前用EB清洗15分钟并在样品之间用EB清洗10分钟。25千伏运行30分钟。每个批次第一个样品之前和最后一个样品之后运行标准品(由蔗糖和异麦芽酮糖加上对应于具体实验的其他糖类),这样可以对由于诸如EB损耗或毛细管发热等因素造成的迁移时间的差异进行测量和修正。样品中每种糖浓度通过峰面积与已知摩尔浓度的标准品比较进行计算。

实施例15

针对HPLC-ED的甘蔗茎组织中来自3个半径圈的细胞内和胞外空间的样品制备

从节间中间切下1.5厘米长的切片,并且从3个半径圈(中央、中间和外圈)收集样品。中央圈是用锋利的软木钻孔器取样的直径6毫米的圆柱体。中间圈是用10毫米直径的软木钻孔器获得的宽度4毫米的环绕带。外圈是通过紧贴外皮切下4毫米厚的带进行收集的。切开的环带分别置于没有膜的GelSpinTM过滤器(MoBio Laboratories)中用以离心收集流体。为了从表面切口的细胞中去除流体,样品以150×g 4℃离心10分钟并弃滤液。再次以600×g 4℃离心4分钟后,作为来自胞外空间的流体收集滤液。为避免细胞内流体的污染,样品以1500×g 4℃离心5分钟并起滤液。样品随后在液氮中冷冻并加热至室温以破坏细胞膜,并以10000g 4℃离心10分钟。这一滤液作为细胞内流体收集。在收集并15000g离心10分钟以去除不可溶材料后,胞内和胞外流体都100℃加热5分钟。使用无菌Milli-Q水将上清液稀释1000倍并用HPLC-E进行分析。

实施例16

通过HPLC-ED检测糖浓度

使用包含PA20分析型阴离子交换柱和对于每个样品批次相对糖类标准品的稀释度进行校准的四波形脉冲电化学检测的Dionex BioLC系统,通过高pH(100毫摩尔/升KOH)下的等强度HPLC完成蔗糖、异麦芽酮糖、海藻酮糖、葡萄糖和果糖的鉴定和定量(Wu和Birch,2004)。这一方法用于所有与NTPP和/或CTPP信号相连的SI基因的实验和所有受P67启动子驱动的SI基因的实验,并且糖浓度针对该过程中的稀释度进行修正以产生相当于植物汁中浓度的结果。

实施例17

通过毛细管电泳测量蔗糖组织中的糖浓度

收集甘蔗组织样品、称重、用液氮快速冷冻,随后酶毫克鲜重添加3微升SMQ水并将试管煮沸20分钟(微离心管盖上有一个小孔以防止盖子爆裂)。简单离心以使所有液体位于试管底部后,所述溶液转移到新鲜试管并以16000g 4℃离心10分钟以去除变性蛋白。上清液流经BondElutTM SCX和SAX,并如实施例14中所述的进行毛细管电泳分析。这一方法用于Uni-启动子/细胞质SI转化株实验,并且糖浓度针对该过程中的稀释度进行修正以产生相当于植物汁中浓度的结果。

实施18

叶子叶绿素、鲜重、干重和水含量测量

甘蔗叶和与之相连的节从上到下编号,将具有顶端明显垂叶的叶子编号为1。每个品系对至少3个重复植物进行测量。对于叶绿素或重量测量的每个重复,使用5毫米直径的打孔器从叶身上距叶垂1/10叶长处取4个叶盘。将4个叶盘放入预先称重的1.5毫升微离心管中,离心管立即称重并置于液氮中。

为了测量干重和水含量,叶盘在70°烘干至恒定干重。水含量计算如下:

(鲜重-千重)/鲜重×100

为了测算叶绿素,冷冻的叶盘研磨成粉末,用80%丙酮避光抽提并随后以12000g在4℃离心10分钟。在664纳米和647纳米处测量吸光滤。叶绿素a、叶绿素b和总叶绿素浓度(Graan和Ort,1984)计算如下:

叶绿素a(mM)=13.19A664-2.75A647

叶绿素b(mM)=22.10A647-5.26A664

总叶绿素(mM)=7.93A664+19.53A647

实施例19

甘蔗叶中光合系统II的电子传送速率

光合作用电子传送速率由使用光纤MINI-PAM/F(Heinz Walz GmbH,Germany)和位于距叶垂1/10叶长处的叶片夹支架2030-B所产生的荧光曲线进行测算。MINI-PAM的光强度、饱和脉冲强度、饱和脉冲宽度、叶沉积系数和发光时间的参数分别设置为8、8、0.8、0.84和10秒。测量过程中将MINI-PAM的内部温度控制在25-30℃之间。对来自每个品系至少3个重复植物的等同的叶片进行了荧光检测。

实施例20

甘蔗叶的CO2固定速率

使用了具有250厘米3叶片盒的LI-6200便携式光合作用系统(LI-COR,USA)来测量与用于荧光测量相同的叶片中的CO2固定速率。

实施例21

甘蔗组织总RNA提取和RNA凝胶杂交分析

使用Bugos等(1995)的方法,从6个月大甘蔗植物的编号1-2叶片或编号3-4茎中分离总RNA。简而言之,10克冷冻组织用液氮研磨成细小粉末。加入抽提缓冲液(20毫升100mM Tris-HCl pH 9.0、200mM NaCl、15mM EDTA、0.5%N-十二烷基肌氨酸钠、100mM 2-巯基乙醇)随后匀浆5分钟。添加缓冲液平衡的苯酚(20毫升)和4毫升氯仿∶异戊醇(24∶1)随后匀浆2分钟。添加醋酸钠(1.4毫升,3M,pH 5.2)并匀浆30秒。抽提物在冰上冷却15分钟并以10,000g在4℃离心10分钟。将水相部分移入新鲜试管并添加等体积异丙醇。以10000g在4℃离心10分钟后,沉淀用70%乙醇清洗并真空干燥。

所述沉淀溶于水并添加8M的LiCl至终浓度2M。冰浴3小时后,通过以14000g在4℃离心10分钟沉淀RNA。RNA沉淀用70%乙醇清洗、真空干燥、溶于水并用分光光度计测量其浓度。

每个泳道30微克总RNA通过在2.2M甲醛和1.0%琼脂糖中电泳加以分离,并印在Hybond N+尼龙膜上(Amersham Pharmacia BioTech)。转印膜与改良的Church和Gilbert杂交溶液(7%SDS,10mM EDTA和0.5M磷酸缓冲液,pH 7.2)预杂交2小时,随后与来自全长UQ68J SI cDNA的随机引物32P标记探针在65℃杂交过夜。杂交后,膜用2×SSC、0.1%SDS在23℃清洗,65℃用2×SSC、0.1%SDS清洗15分钟,1×SSC、0.1%SDS清洗15分钟并用0.1×SSC、0.1%SDS清洗15分钟,用塑料膜包裹并与磷屏成像板(Molecular Dynamics)曝光过夜以积累潜在的图像。

实施例22

可用于实践本发明的不同于蔗糖异构酶的基因

可以引入各种基因以实现具有改变代谢流的作用的将生物体正常感知的一种底物化合物部分转化成该生物体内不以相同方式感知的产物化合物,这导致更高产量所需化合物的积累。

在所需化合物是碳水化合物的情况下,有用的基因可以包括那些编码碳水化合物活性酶的基因(http://afmb.cnrs-mrs.fr/~cazy/CAZY/index.html),这样的酶例如异构酶(EC 5.4)或转糖苷酶(EC 3.2)或包括诸如淀粉蔗糖酶(EC 2.4.1.4)、葡聚糖蔗糖酶(EC 2.4.1.5)、果聚糖蔗糖酶(EC 2.4.1.10)、或环糊精葡萄糖转移酶(EC2.4.1.19)等葡萄糖转移酶和果糖转移酶的糖基转移酶(EC 2.4),以及优先合成对于所述改造的生物体而言是外源的寡聚糖的这些酶的变体(Demuth等,2002;Martin等,2004;Park等,2003;Plou等,2002;van der Veen等,2004)。

另外,编码导致糖或内源糖衍生物部分转化成诸如糖醇等外源糖衍生物(Saha2004;Zhifang和Loescher,2003)的基因可能是有用的。基因的选择应当考虑到实用性和在具有相应底物和辅助因子的目标生物体中的代谢作用,以及该生物体感知和代谢所述产物的能力。本发明可以应用于具有充分不同的生理机能的生物体并且精通本领域的研究人员应当认识到,可以引入以在不同物种中实现本发明的效果的其他基因的最佳表达谱可以通过常规实验加以确定。

实施例23

除甘蔗外可以用于实践本发明的植物

本发明也可以应用于为收获可溶性糖而培育的其他植物(例如甜高粱或甜菜)或其中由可溶性糖所赋予的甜度是其重要特征的植物,例如如甜玉米的谷物、如豌豆的豆类、如葡萄、西红柿和香蕉的水果。在公众领域里有用于为在这些植物中表达而引入基因的步骤的详尽文献记录(例如Cortina 2004;Ganapathi等,2001;Grant等,2003;Hermann等,2001;Jeoung等,2002;Joersbo等,2000;Polowick等,2002;Tadesse等,2003;Vidal等,2003;Zhang等,2001;Zhang等,2002所报道的方法),并且对于精通本领域的人员而言是熟知的。

甜高粱可以用这里所给出的使用甘蔗作为模式植物类型的实施例中所描述的表达构建物进行转化。其他物种中,可以通过适当启动子和信号序列的置换对构建物进行调整。例如CaMV35S启动子可以用于在双子叶植物中的组成型表达。合适地,可以使用在所需沉积组织中优先表达的启动子;例如,在甜菜的储藏根中表达的马铃薯块茎蛋白B33启动子,或针对其他物种的果实特异性或成熟相关性启动子(Lessard等,2002)。例如马铃薯块茎蛋白B33基因的NTPP或其他已知液泡信号(Vitale和Raikhel,1999)的其他信号序列可以用于以不同程度将所述基因产物分配在细胞内的蔗糖储存隔室和代谢隔室之间。

                     实施例结果与讨论

              Ubi启动子驱动的细胞质靶向SI表达

异麦芽酮糖在表达UQ14S和UQ68J基因的Ubi-SI转基因甘蔗品系的所有组织中、

          但只在表达UQErw转基因品系的茎组织中得以检测

选择表达引入到Ubi启动子下游的SI基因UQErw(11株)、UQ14S(11株)或UQ68J(9株)的甘蔗栽培品种Q117的转基因植物。已知这一启动子在大部分甘蔗组织中能驱动持续的“组成型”表达,并在受热休克和一些其他环境刺激诱导下具有更高的表达水平(Hansom等,1999)。在暖房生长的6个月大具有12到15节的植物中,从pUbil4S和pUbi68J品系的叶、根和茎组织中检测到了异麦芽酮糖,但仅从pUbiErw品系的茎组织中检测到了异麦芽酮糖(图1)。该结果证实引入的SI基因在甘蔗中是具有功能的,并说明正如以前在大肠杆菌和转基因甘蔗愈伤组织中所证明的(Birch and Wu,2002),在成熟的甘蔗植物中UQ68J赋予从蔗糖到异麦芽酮糖的最有效的转化效率(图2)。

靶向细胞质的UQ68J SI的组成型过表达延缓了生长、改变了形态学并抑制了转

                  基因甘蔗的蔗糖积累

相同条件下培育的所有pUbiErw和pUbil4S转基因甘蔗品系与对照Q117植物在表型上没有差异(表2)。9个pUbi68J转基因甘蔗品系可以按以下分类(图3):

1)“正常”。5个品系(如pUbi68J2.36)与对照Q117在表型上没有差异。

2)“中脉软弱”。1个品系(pUbi68J1.2)除了在完全展开的叶片中中脉起皱外具有与Q117相似的生长状况和大小。

3)“矮小的”。3个品系表现出具有矮小的、薄的节间及小的叶片的生长迟缓。其中只有pUbi68J2.22品系存活。

表2

暖房条件下培育6个月的Q117对照和

代表性转基因甘蔗品系的表型特征

  植物品系  茎直径(毫米)  高度(厘米)  总节数  外表  Q1 17(对照)  pUbil4S2.36  pUbiErw3.7  pUbi68J2.36  pUbi68J1.2  pUbi68J2.22  18  20  17  17  15  7  184  185  180  172  155  20  15  15  15  15  16  12  正常  正常  正常  正常  中脉软弱  矮小的

代表性品系pUbi68J2.36(正常)、pUbi68J1.2(中脉软弱)和pUbi68J2.22(矮小的)的Northern分析说明在矮小植物中具有最高水平的UQ68J转录本,而其他两个类别具有较低水平的SI基因表达(图4)。UQ68J转录本的高水平对应蔗糖到异麦芽酮糖的高转化效率(在叶、根和茎中可达96%、90%和69%,图5)并严重损耗了茎中的蔗糖浓度(表3)。

表3

暖房条件下培育6个月的Q117对照和转基因植物中

内源蔗糖转化成异麦芽酮糖的转化效率及糖浓度1

  转基因品系  茎转化效率(%)  [蔗糖]  (mM)  [异麦芽酮糖]  (mM)  [总糖]  (mM蔗糖当量)  pUbi68J2.36  pUbi68J1.2  pUbi68J2.22  Q117(对照)  2.5  20.6  56.9  0.0  479.6  68.4  13.3  362.0  12.2  16.7  17.5  0.0  716.3  135.7  18.9  368.8

1糖通过经离子交换过滤(SCX和SAX)后的毛细管电泳进行定量,并针对该过程中已知的稀释度和糖的不同损失进行修正以表示相当于植物汁中浓度的结果。转化效率定义为异麦芽酮糖/(蔗糖+异麦芽酮糖)。

低表达细胞质靶向的SI基因的转基因品系中异麦芽酮糖的产生没有对蔗糖积累

                      模式产生不利影响

伴随着具有低水平UQ68J转录本的转基因品系的发育阶段的糖图谱显示了与Q117对照相似的蔗糖积累模式(图6)。异麦芽酮糖浓度也随着茎成熟而提高(图7)。这些结果表明,在某个临界值以下即便是细胞质中的蔗糖到异麦芽酮糖的转化不会干扰蔗糖转运和积累。此外,异麦芽酮糖被证明是稳定的并能在甘蔗中积累。

这些结果表明:

(i)针对蔗糖到异麦芽酮糖的有效转化,UQ68J基因比其他测试的SI基因对于在植物中表达具有优势。这对于诸如将植物用作生产异麦芽酮糖的生物工厂等的工业应用是非常理想的。

(ii)由于异麦芽酮糖不被植物代谢,它能作为存储的糖从可能限制植物中最终糖产量的蔗糖的裂解和合成的“琐碎的循环”中以及从某些环境条件下可能减少可收获的糖产量的存储的蔗糖的重动员中脱离出来。因此,适当形式的SI活性具有通过将部分糖储量转移成不被代谢的沉积物提高植物中总的糖产量的能力。这有效地为随后的收获将糖积累变成进入异麦芽酮糖库的“单向阀门”。此外,异麦芽酮糖库的积累可能可以实现而没有伴随着可溶性糖的其余库存的相应损耗。这些相关联的可能性的实际实现对于诸如将植物用作积累最高可能产量的存储的可溶糖的生物工厂等工业应用是非常理想的。

(iii)有效的细胞质靶向的SI基因的高水平组成型表达通过将生长所需的蔗糖转化成植物代谢不能利用的异麦芽酮糖严重抑制植物生长。这对于工业应用而言是非常不希望的,因为植物的生长是为充足量的所需产物(异麦芽酮糖和其他可溶糖)提供存储器所需要的。下面,通过证明对于异麦芽酮糖的最佳工业化生产,优选地对引入的SI基因的表达进行调控以将SI活性基本限制在诸如成熟甘蔗茎中甘蔗存储薄壁组织细胞的液泡等用于糖储存的亚细胞隔室内,本发明人提供了一种针对这一关键限制的解决方案。

胞质靶向的SI基因低表达的一些转基因品系中总的可溶糖含量得到了提高

转基因品系pUbi68J2.36中,总的可溶糖浓度(以葡萄糖当量表示)相对于Q117对照在成熟的茎(节间#12到13)中提高了1.9倍并在6个月大的植物的叶片中提高了2.4到3.0倍(图8)。另一个转基因品系pUbi68J2.28中,总的葡萄糖当量糖浓度相对于Q117对照在9个月大的植物的成熟的茎中(节间#18)提高了1.6倍。在9个月大时对品系pUbi14S2.27、pUbiErw2.1和pUbiErW3.7的单条茎分析中,节间#20中的葡萄糖当量糖浓度比Q117对照中高1.5到1.6倍。在形态学上所有这些品系与Q117对照甘蔗植物没有表现出差异。这些品系中异麦芽酮糖浓度相对于蔗糖浓度通常较低,在成熟的茎中异麦芽酮糖介于总的糖的1%以下到5%的区间。

更高的总的可溶糖含量主要来自增加的蔗糖、葡萄糖和果糖而不是异麦芽酮糖。例如,在转基因品系pUbi68J2.36中,成熟的茎中对葡萄糖当量的百分比贡献是蔗糖(80%)、异麦芽酮糖(3%)、果糖(6%)和葡萄糖(11%)。相反,在Q117对照中该百分比贡献是蔗糖(98%)、果糖(1%)和葡萄糖(1%)。应当注意,虽然相对于Q117中的98%,蔗糖在pUbi68J2.36中只占80%,转基因品系中的绝对蔗糖浓度是Q117对照的1.3倍(表2)。商业上的可能性,尤其是对于作为发酵原料的工业化应用(诸如由这些品系生产乙醇)是巨大的。

低表达胞质靶向SI基因的转基因品系中与可发酵糖浓度的提高相平行的光合作

                   用相关特征的改进

为了进一步说明低SI表达的转基因品系中总的糖浓度提高的机制,检测了光合作用速率和相关指标。相对于Q117对照,pUbi68J2.36的大部分叶片(尤其在较成熟的叶片中)表现出更高的CO2固定速率(图9)。

所述转基因品系中叶绿素含量和电子转运速度也较高,并且又一次在较成熟的叶片中该差异较大(图10)。在大部分叶片中,Q117对照叶片中的叶绿素a/b比例与所述转基因品系中的相似或更高(图11)通过叶绿素荧光测量的光合系统II中的电子转运速度部分反应了转基因和对照植物之间光合作用效率的差异,即与Q117对照相比对于pUbi68J2.36品系的大部分叶片具有更高的光反应曲线(图12)。

这些结果说明:

(i)植物中蔗糖异构酶的表达使得该植物中的部分蔗糖库存转化成植物相关控制机制以与蔗糖等同的方式所不识别的异构体,可以导致植物组织中更高总糖水平的积累;

(ii)包括将生物体通常感知的内源糖转化成不以相同方式所感知的新的糖在内的对代谢的具体改变,可以通过对供能组织中合成、供能和沉积组织之间的运输和沉积组织中的周转或存储的组合作用转变代谢以积累更高浓度的可溶性碳水化合物。

                由Ubi启动子所表达的靶向液泡SI

通过将SI基因产物靶向至液泡产生了具有高异麦芽酮糖产量的健康植物

选择通过与甜马铃薯sporamin的NTPP融合(22个品系仅含NTPP,9个品系含NTPP和His标记)、与烟草几丁质酶CTPP融合(7个品系仅含CTPP,11个品系含CTPP和His标记)或与NTPP和CTPP两者融合而不含His标记(9个品系)的方法将UQ68J SI基因产物靶向至甘蔗栽培品种Q117液泡的转基因甘蔗。暖房培育8个月大的含约20节(从单芽眼(single-eye)块培育的植物)到30节(来自截根苗植物)的植物中,可以从大约80%所检测的pU3ZERsN68J、pU3ZERc68JC、pU3ZERsN68J-His、pU3ZERc68JC-His和pU3ZERsN68JC品系的茎组织中检测到异麦芽酮糖(在以下部分详述)。

最高的异麦芽酮糖浓度是品系pU3ZRsN68JHis3.2成熟茎组织中的756mM。异麦芽酮糖积累水平在转基因品系间变动,这与独立的转基因插入事件之间熟知的可变性(Matzke和Matzke,1998;Peach和Velten,1991)相一致,并可能受微环境对诱导型Ubi启动子作用的影响(Hansom等,1999)。与甘蔗糖积累提高的天然模式基本吻合,异麦芽酮糖浓度随茎成熟而提高,并且异麦芽酮糖与其他糖的比例在转基因品系之间有所差异(图15)。

20个检测的转基因品系中的13个(65%)的根部是异麦芽酮糖阳性的,但是除了品系pU3ZERsN68J1.4和pU3ZERsN68JHisl.3之外,异麦芽酮糖浓度低于1mM(图13)。异麦芽酮糖只在在其成熟的茎组织中积累了高水平的异麦芽酮糖的转基因品系的叶片组织中可以检测到。在这些品系中,异麦芽酮糖随着叶片成熟而逐渐积累,并保持在1mM以下直到叶片8(图14)。其他所检测的品系(例如,下面所述具有高蔗糖含量的品系)在叶片组织中是异麦芽酮糖阴性的。

所有产生的转基因品系外表健康并与Q117对照没有明显的形态学差异(表4)。

表4

Q117对照和含靶向液泡SI在暖房条件下培育8个月的

代表性转基因甘蔗品系的表型特征

  植物品系  茎直径(毫米)  高度(厘米)  总节数  外表  Q117(对照)a  18  160  21  正常  Q117(对照)a  18  164  21  正常  Q117(对照)b  20  205  28  正常  pU3ZERsN68J3.2a  19  185  22  正常  pU3ZERsN68J3.2Hisa  17  165  22  正常  pU3ZERsN68J1.17a  18  150  20  正常  pU3ZERsN68J1.2b  17  205  31  正常  pU3ZERsN68J1.10a  19  186  27  正常  pU3ZERc68JC1.3Hisb  21  176  31  正常  pU3ZERc68JC3.7Hisb  17  248  38  正常  pU3ZERc68JC3.8Hisb  17  186  30  正常  pU3ZERsN68JC1.4b  17  200  30  正常  pU3ZERsN68JC3.7a  20  160  30  正常

a单芽眼块产生的芽;b截根苗芽

这些结果说明:

(i)即便是由Ubi启动子驱动的“组成型”表达,将SI转基因产物靶向至液泡允许在甘蔗茎存储组织中异麦芽酮糖充分积累而没有对植物的生长和发育产生明显的不利影响。

(ii)已知甘蔗的液泡对于大部分引入的蛋白质是不利的(Gnanasambandam和Birch,2004),因此SI不大可能在这一细胞隔室中积累。然而,随着向蔗糖储存液泡持续供给诸如UQ68J的高效SI,在那里异麦芽酮糖可以逐渐发展地积累到最终的高产量。

(iii)有效的靶向到液泡途径避免了在活跃生长的组织细胞中占主导的代谢活跃的胞质区间中的SI活性,由此避免了对生长的不利影响。这对于包括将蔗糖转化成不能由植物有效代谢的化合物在内的工业应用是非常理想的。

靶向液泡的转基因品系中的胞内和胞外区间都检测到了异麦芽酮糖

在胞外流体组分和胞内流体组分中都可以检测到大致相同浓度的异麦芽酮糖。这一现象是所有NTPP、CTPP或两者都有的液泡靶向型构建物所共有的(图16)。这些组分中的蔗糖浓度也是相似的,但由于胞内(液泡)区间大得多的体积,大部分糖存在于这一区间内。已知一小部分液泡靶向型蛋白质可以继续通过分泌途径到达胞外区间,在那里它比在液泡中更稳定(Gnanasambandam和Birch,2004)。植物被认为不能在细胞区间之间转运异麦芽酮糖,因此分泌的SI可能是造成所观察到的胞外异麦芽酮糖积累的原因。

假设对植物不存在不利影响,正如本研究中所观察到的品系中的情况,这一效果对于其中针对转化产物的最大产量所希望的蔗糖的最高总转化的工业应用是有优势的。

                 总的糖含量以不同方式得到提高

基于不同的构建物以及甘蔗茎中所积累的异麦芽酮糖和蔗糖的形式,那些相对于对照Q117具有高的总糖浓度的转基因甘蔗品系可以分成4组:

1.含NTPP-SI的,在具有高异麦芽酮糖浓度(>70mM)的品系中,异麦芽酮糖对总糖含量的主要贡献比对照Q117中的贡献更高。

2.含NTPP-SI的,在具有中等异麦芽酮糖浓度(20-70mM)的品系中,更高的总糖浓度主要来自于比对照Q117中更高的蔗糖浓度。

3.含NTPP-SI的,在具有低于检测阀值的异麦芽酮糖的品系中,成熟的茎中的蔗糖浓度提高到高于对照Q117中的水平。

4.含SI-CTPP加6×His标记的,在具有低异麦芽酮糖浓度(<10mM)的品系中,更高的总糖含量主要来自于比对照Q117中更高的蔗糖浓度。

高异麦芽酮糖浓度对一些含NTPP-SI的转基因品系的成熟茎中

              提高的总可溶糖含量的主要贡献

转基因品系pU3ZERsN68J3.2(在以下部分中缩写为N3.2)中,一株由单芽眼块培育的8个月大的植物在第26节间内第2环带的胞内区间积累了108mM异麦芽酮糖,这相当于总糖含量的14%。一条截根苗茎在第22节间内积累了286mM异麦芽酮糖,相当于总糖含量的47%。含35节的品系pU3ZERsN68J3.2His(缩写为N3.2His)的一条截根苗茎积累了756mM异麦芽酮糖,相当于第33节间中总糖含量的67%。

在Q117对照中,不同茎的第20节间中的总糖浓度介于369mM到490mM(蔗糖当量)之间。与Q117对照中所观察到的最高总糖含量(490mM)相比,第20节间中的总糖浓度在N3.2中提高了29%、在N3.2截根苗中提高了24%、并在N3.2His截根苗中提高了20%。就第33节间而言,N3.2His截根苗中的总糖浓度是Q117对照中水平的2.7倍(图17)。

在含CTPP信号或含双重NTPP+CTPP靶向信号的转基因品系中,没有观察到高浓度异麦芽酮糖。NTPP信号可以以更高效率将活性SI基因靶向进入甘蔗蔗糖存储细胞区室。

高蔗糖浓度对含NTPP-SI具有中等异麦芽酮糖浓度的转基因品系的

            成熟茎中提高的总可溶糖含量的主要贡献

诸如pU3ZERsN68J1.17(缩写为N1.17)和pU3ZERsN68J1.2(缩写为N1.2)的转基因品系积累了Q117对照的1.1到1.6倍的蔗糖含量。相对于Q117对照,N1.17第20节间中的蔗糖含量在植物茎中提高了28%并在截根苗中提高了56%。在N1.2截根苗茎中,蔗糖含量相对Q117对照提高了20%。来自以上3种转基因植物茎的成熟节间中的蔗糖占总糖浓度的比例分别是95%、90%和91%。这些品系中的异麦芽酮糖浓度是25、8和48mM,仅占总可溶糖的5%、1%和9%(图18)。

含NTPP-SI具有不可检测的异麦芽酮糖的转基因品系的成熟茎中的高蔗糖浓度

诸如pU3ZERsN68J1.10(缩写为N1.10)的转基因品系具有另一模式的糖图谱。虽然SI基因可以通过PCR得以检测,从茎、叶或根中通过HPLC-ED没有检测到异麦芽酮糖。N1.10的成熟的茎中积累了Q117对照中1.5倍水平的蔗糖(表5)。

表5

转基因品系N1.10和Q117对照截根苗茎的第20节间中糖图谱的比较

  转基因  品系  葡萄糖  (mM)  果糖  (mM)  蔗糖  (mM)  异麦芽酮糖  (mM)  总糖  (mM,蔗糖当量)  Q117  5.7  4.4  448.9  0  453.9  N1.10  6.1  6.1  662.6  0  668.7

1对于该表及随后表格,通过HPAE-PAD对糖进行定量,并针对过程中已知的稀释度和糖损失进行修正以相当于植物汁中的浓度表示结果。

含SI-CTPP His的具有低浓度异麦芽酮糖的转基因品系的

             成熟茎中的高蔗糖浓度

11个检测的含SI-CTPPHis的转基因品系中的3个在成熟的茎中产生了低于2mM的异麦芽酮糖,并比Q117对照积累了更多的可溶糖。转基因品系pU3ZERc68JC1.3His(缩写为C1.3His)、pU3ZERc68JC3.7His(缩写为C3.7His)和pU3ZERc68JC3.8His(缩写为C3.8His)积累了Q117对照中水平1.8、1.9和1.6倍的蔗糖以及更高的葡萄糖和果糖含量(表6)。对于转基因品系C3.7His,异麦芽酮糖无法检测。在这些品系中,成熟的茎不仅比Q117对照积累了更多的可溶糖,而且其糖的发育图谱发生了改变,其更年幼的正在扩展的节间中的许多糖浓度接近了在成熟节间中所观察到的高浓度(图19)。

相反,所检测的7个含SI-CTPP并且不含6×His标记的品系中没有表现出提高的蔗糖积累。

表6

含SI-CTPP和6×His标记的截根苗品系的第20节间中的高糖含量

  转基因品系  葡萄糖  (mM)  果糖  (mM)  蔗糖  (mM)  异麦芽酮糖  (mM)  总糖  (mM,蔗糖当量)  Q117  5.7  4.4  448.9  0  453.9  C 1.3His  12.8  13.2  786.9  1.1  801.0  C3.7His  26.7  18.3  838.1  0  860.3  C3.8His  14.5  19.4  701.7  0.2  718.9

针对高总糖表型的SI构建物和转基因品系的设计与选择

基于用报道构建物的研究,对于甘蔗细胞中的液泡靶向,CTPP表现出比NTPP更低的效率,遗留了充分可检测的胞质活性(Gnanasambandam和Birch,2004)。即便是对于NTPP,在特殊的发育或生理条件下,一部分相连蛋白可能留在细胞质中或错误地靶向到其他的细胞隔室中(Gnanasambandam和Birch,2004)。由于不同的周围序列的影响和不同的转化情况下所插入序列的不同排列,这些作用在有些转化株中可能比在其他转化株中更为突出。6×His标记似乎对各种细胞隔室中SI蛋白的转运、稳定性和/或活性有影响,虽然还没有在蛋白水平上阐明这样的作用的细节。

通过这样的作用的组合,各种SI表达构建物可以导致一部分转化株具有产生高总糖表型的SI活性模式。本发明人已经表明,能够通过设计并选择SI构建物以提高高糖表型内具有不同所需糖成分的转化株的比例。例如,NTPP-SI构建物优选用于选择具有高异麦芽酮糖含量的品系,以及SI-CTPPHis构建物优选用于选择在茎发育过程中具有高蔗糖含量的品系。

针对高糖表型所需种类中的个体进行转化株筛选是常规的。这里所显示的结果是在密封的温室条件下在转基因甘蔗品系从愈伤组织再生为嫩芽后的早期无性世代中从植物和截根苗茎中选择的。可以对不同的植物品种进行类似的筛选,并且最初的选择轮回通常应跟随着对在密封的温室和/或经核准的实地试验中培育的重复植物进行检测。

本发明人构思了对SI构建物的其他变化以提高转化株中所需高糖表型的频率和范围。尤其构思了所述SI基因在诸如沉积组织等具体组织和/或诸如存储薄壁组织等具体细胞类型中的优先表达;与将所述SI蛋白靶向至诸如用于高异麦芽酮糖产量的存储细胞隔室或用于高蔗糖产量的代谢细胞隔室等具体的细胞隔室相结合。取决于高糖表型的所需种类,最佳SI活性水平应有所变化。例如,通过相应表达强度和针对蛋白酶抗性的SI的改造可以实现成熟的茎液泡中相对较高的活性以提高异麦芽酮糖产量。另外,胞质中的低活性可以通过弱启动子和/或针对低mRNA和/或蛋白稳定性所改造的基因序列得以实现。下面作为实例提供了一种针对随茎成熟而调控的相对弱表达所设计的构建物。

          茎特异性启动子P67B的克隆和特征描述

序列及由甘蔗成熟茎特异性基因67的第二个启动子同源物

         所驱动的甘蔗中GUS报道活性

如通过Northern杂交所指出的,先前所述的基因67(Birch和Potier,2000)是在成熟的甘蔗茎中特异表达的,但是从甘蔗基因组中分离的相应启动子序列驱动GUS报道基因主要在未成熟的茎中表达。通过使用基因组DNA作为模板以及由已知启动子(命名为P67A)所设计的引物的高保真PCR获得了命名为P67B的不同的推定启动子,其987bp的长度比P67A短了60bp。两个序列的对齐排列表现出92.98%相同性,相对于P67A,在P67B中具有4段缺失(49bp+4bp+1bp+1bp)、两个插入(1bp+1bp)和18个点突变。

在11个包含P67B-GUS报道构建物的转基因甘蔗品系中,通过GUS组织化学或荧光检测方法在叶片或根组织中没有观察到活性。在茎组织中通过组织化学检测方法勉强可以检测到GUS活性,这说明其低表达。延长孵育以提高灵敏度的荧光检测法显示在至少一个P67B-GUS品系中活性随着茎成熟而提高,这与P67A-GUS品系的更年幼的节间中更高的表达不同(图20)。这些品系之间的反差图谱在两个所检测的无性世代中得以保持。

受启动子67A或67B驱动的UQ68J SI基因的胞质表达

在一些包含受启动子67B驱动的重组UQ68J SI基因的

       转基因品系中检测到了高蔗糖浓度

在针对引入的受P67A或P67B驱动的SI基因的PCR检测中呈阳性的转基因品系的叶片或根中没有检测到异麦芽酮糖。在9个检测的P67A-SI品系中的3个以及18个检测的P67B-SI品系中的8个品系的成熟的茎组织中检测到了低浓度(<3mM)异麦芽酮糖,所有这些品系表现出正常的生长和发育状况。

所有异麦芽酮糖阴性品系以及11个异麦芽酮糖阳性品系中8个品系在成熟的节间中具有与Q117对照相似的总糖含量。3个含受67B启动子驱动的SI的品系(P67B68J1.5、P67B68J2.5和P67B68J2.6)积累的糖水平约为Q117对照中水平的1.8倍。该增长主要表现在蔗糖含量中,以及来自增加的葡萄糖和果糖的不同贡献(表7)。

表7

含由启动子67A或67B驱动的SI的异麦芽酮糖阳性转基因品系的

        20节间中以及Q117对照中的糖含量

  转基因品系  葡萄糖  (mM)  果糖  (mM)  蔗糖  (mM)  异麦芽酮糖  (mM)  总糖  (mM,蔗糖当量)  P67B68J1.5  43.6  31.2  723.3  2.2  762.9  P67B68J2.5  12.3  8.7  716.5  0.8  727.8  P67B68J2.6  10.0  6.2  716.9  1.2  726.2  P67B68J2.1  6.9  7.1  465.3  0.3  472.6  P67B68J2.2  1.3  0.9  470.8  0.5  472.4  P67B68J1.4  6.1  8.0  400.4  1.0  403.5  P67B68J1.6  1.6  0.9  397.3  0.2  398.8  P67B68J3.2  0.5  0.4  288.9  1.0  290.3  P67A68J1.6  2.0  2.3  414.2  0.7  417.1  P67A68J2.8  2.1  1.6  405.0  0.3  407.2  P67A68J1.5  5.1  3.3  394.1  0.7  399.0  Q117  1.6  1.2  403.1  0.0  404.5

这里所引用的每一个专利、专利申请书和出版物的公开以此通过参考完整地结合在本说明书中。

这里对任何参考的引用不应当解释为承认这样的参考是本申请的可利用的“在先技术”。

贯穿整个说明书的目的是描述本发明的优选实施方式而不是将本发明局限于任何一种实施方式或特征的具体集合。因此精通本领域的人员应当认识到,根据本公开,可以在所举例的具体实施方式中进行各种改动和改变而没有超出本发明的范围。所有这样的改动和改变确定为包括在所附属的权利要求的范围内。

参考书目

Ausubel FM,Brent R,Kingston RE,Moore DD,Seidman JG,Smith JA,Struhl K编(1990)Current Protocols in Molecular Biology,New York:John Wiley and Sons.

Bevan MW,Flavell RB,Chilton M-D(1983)作为植物细胞转化可选标记的嵌合抗生素抗性(A chimaeric antibiotic resistance gene as a selectable marker for plant celltransformation).Nature 304,184-187.

Birch RG(1997)植物转化问题和实际应用策略(Plant transformation:problems andstrategies for practical application).Annu.Rev.Plant Physiol.Plant Molec.Biol. 48,297-326.

Birch RG(2000)甘蔗转化:胚胎形成愈伤组织的微粒轰击和抗生素遗传霉素选择(Sugarcane transformation:microprojectile bombardment of embryogenic callus&geneticinselection),www.botany.uq.edu.au/people/rbirch/scshooting.pdf(2004年5月5日访问)

Birch RG,Potier BAM(2000)表达异源核酸的甘蔗植物启动子(Sugarcane plant promotersto express heterologous nucleic acids)。国际专利说明书PCT/AU99/01033;WO 01/18211 A1.授权给昆士兰大学。

Birch RG,Wu L(2002)蔗糖异构酶(Sucrose isomerases)。国际专利说明书WO 02/18603A1 2002年3月7日公开。[US2004005589 A1 2004年1月8日;AU 8160901 200年3月13日;PCT/AU01/01084提交于200年8月29日;AU PQ 9768提交于2000年8月29日](授权给昆士兰大学).

Brnke F,Sonnewald U(2001a)转基因植物中无龋齿糖的生产(Production of non-cariogenic sugars in transgenic plants)。国际专利说明书PCT/EP01/01603 AU200135474终止于2003年12月18日;WO 01/59136A1公开于2001年8月16日(De);PCT/EP01/01603提交于2001年2月14日(De);DE 100 06 462.0提交于2000年2月14日(De)].

Brnke F,Sonnewald U(2001b)通过改变蔗糖代谢影响花粉发育的方法(Method forinfluencing the pollen development by modifying the sucrose metabolism)。申请书:DE 100 06413.2,100 45 113.6,14/2/2000,13/9/2000.国际专利申请PCT/EPO/01412,WO 01/59135 A1,2001年8月16日出版。

Brnke F,Hajirezaei M,Heineke D,Melzer M,Herbers K,Sonnewald U(2002a)在转基因烟草植物强烈受损发育中高水平生产无龋齿糖异构体palatinose(High-level production ofthe non-cariogenic sucrose isomer palatinose in transgenic tobacco plants strongly impairsdevelopment).Planta 214,356-364.

Brnke F,Hajirezaei M,Sonnewald U(2002b)作为palatinose生产生物反应器的马铃薯块茎(Potato tubers as bioreactors for palatinose production).J.Biotechnol.96,119-124.

Btha FC,Sawyer BJB,Birch RG(2001)可溶性酸性转化酶活性降低的转基因甘蔗的蔗糖代谢(Sucrose metabolism in the culm of transgenic sugarcane with reduced soluble acidinvertase activity).甘蔗技术专家国际协会第29次会议论文集,2001年9月,布里斯班,第2卷(Hogarth DM主编),588-591(In Proceedings of the International Society of SugarcaneTechnologists XXIV Congress,Brisbane,September 2001,Volume II(Hogarth DM,ed)Mackay:ASSCT,pp.588-591)。

Bower R,Elliott AR,Potier BAM,Birch RG(1996)使用可见或可选标记的微弹介导的高效甘蔗共转化(High-efficiency,microprojectile-mediated cotransformation of sugarcane,usingvisible or selectable markers).Molec.Breed.2,239-249.

Bradford M(1976)采用蛋白质染料结合原理来量化微克级蛋白质的快速且灵敏的方法(A rapid and sensitive method for the quantification of microgram quantities of protein using theprinciple of protein-dye binding).Anal Biochem.72,248-254.

Bugos RC,Chiang VL,Zhang XH,Campbell ER,Podila GK,Campbell WH(1995)不用胍提取从植物组织分离(RNARNA isolation from plant tissues recalcitrant to extraction inguanidine).BioTechniques 19,734-737.

Christensen AH,Quail PH(1996)用于在单子叶植物中高水平表达可选和/或可筛选标记基因的基于遍在蛋白启动子的载体(Ubiquitin promoter-based vectors for high-level expression ofselectable and/or screenable marker genes in monocotyledonous plants).Transgen.Res.5,213-218.

Cortina C,Culianez-Macia FA(2004)马铃薯转化和转基因植物的生产(Tomatotransformation and transgenic plant production).Plant Cell Tissue and Organ Culture 76,269-275.

Demuth K,Jordening HJ,Buchholz K(2002)通过葡聚糖蔗糖酶合成寡糖:新的非常规受体(Oligosaccharide synthesis by dextransucrase:new unconventional acceptors).CarbohydrateResearch 337,1811-1820.

Fernie,AR,Roessner,U,Geigenberger,P(2001)当蔗糖类似物palatinose被用于正在生长的马铃薯块茎盘时导致蔗糖降解和淀粉合成被激活(The sucrose analog palatinose leads to astimulation of sucrose degradation and starch synthesis when supplied to discs of growing potatotubers).Plant Physiol.125,1967-1977.

Fernie AR,Willmitzer L,Trethewey RN(2002)蔗糖到淀粉:分子植物生理学的跃迁(Sucrose to starch:a transition in molecular plant physiology).Trends in Plant Science 7,35-41.

Ganapathi TR,Higgs NS,Balint-Kurti PJ,Arntzen CJ,May GD,Van Eck JM(2001)农杆菌介导的胚胎细胞悬液的转化(Agrobacterium-mediated transformation of embryogeniccell suspensions of the banana cultivar Rasthali(AAB)).Plant Cell Reports 20,157-162.

Gnanasambandam A,Birch RG(2004)在甘蔗幼叶中通过sporamin NTPP空泡信号有效地将发育误靶向质粒(Efficient developmental mis-targeting by the sporamin NTPP vacuolarsignal to plastids in young leaves of sugarcane).Arabidopsis.Plant Cell Reports。

Graan T,Ort DR(1984)快速电子供体向P700定量,功能性质体醌聚集,以及菠菜叶绿体中光系统的比例(Quantitation of the rapid electron donors to P700,the functionalplastoquinone pool,and the ratio of the photosystems in spinach chloroplasts).J.Biol.Chem.259,14003-14010.

Grant JE,Thomson LMJ,Pither-Joyce MD,Dale TM,Cooper PA(2003)根癌农杆菌品系对生产转基因豌豆(Pisum sativum L.)的影响(Influence of Agrobacterium tumefaciensstrain on the production of transgenic peas(Pisum sativum L.)).Plant Cell Reports 2l,1207-1210.

Hansom S,Bower R,Zhang L,Potier B,Elliott A,Basnayake S,Cordeiro G,HogarthDM,Cox M,Berding N,Birch RG(1999)在甘蔗中调节转基因表达(Regulation of transgeneexpression in sugarcane).甘蔗技术专家国际协会第23次会议论文集,1999年2月,新德里,278-290,V.Singh主编(In Proceedings of the International Society of Sugarcane TechnologistsXXIII Congress,New Delhi,February 1999,pp.278-290.Edited by V.Singh.New Dehli:STAI).

Hermann SR,Harding RM,Dale JL(2001)香蕉肌动蛋白1启动子驱使近组成型转基因在香蕉(Musa spp.)营养组织中表达(The banana actin 1 promoter drives near-constitutivetransgene expression in vegetative tissues of banana(Musa spp.)).Plant Cell Reports 20,525-530.

Jeoung JM,Krishnaveni S,Muthukrishnan S,Trick HN,Liang GH(2002)用绿色荧光蛋白基因和β-葡糖醛酸糖苷酶作为可视标记优化高粱转化参数(Optimization of sorghumtransformation parameters using genes for green fluorescent protein and beta-glucuronidase asvisual markers).Hereditas 137,20-28.

Joersbo M,Mikkelsen JD,Brunstedt J(2000)用甘露糖选择转基因甜菜的生产以确定启动子强度和转化频率之间的关系(Relationship between promoter strength andtransformation frequencies using mannose selection for the production of transgenic sugar beet).Molecular Breeding 6.207-213.

Kunz M,Mattes R,Munir M,Vogel M(2002)产生异麦芽糖的转基因植物(Transgenicplants which produce isomalt)。国际专利说明书WO 02/27003 A1公开于2002年4月4日(De).[USA2004/0064851 A1公开于2004年4月1日(En);AU2001763982004年3月18日审查指令(examination direction);PCT/EP01/08055提交于200年7月12日(De);DE 100 47286.9提交于2000年9月20日(De)].

Laemmli UK(1970)在噬菌体T4头装配期间切割结构蛋白(Cleavage of structuralproteins during the assembly of the head of bacteriophage T4).Nature 227,680-685.

Lessard PA,Kulaveerasingam H,York GM,Strong A,Sinskey AJ(2002)为植物代谢工程操纵基因表达(Manipulating gene expression for the metabolic engineering of plants).Metabolic Engineering 4,67-79.

Loreti E,Alpi A,Perata P(2000)葡萄糖和二糖感知机制调节大麦胚中α-淀粉酶的表达(Glucose and disaccharide-sensing mechanisms modulate the expression of alpha-amylase in barleyembryos).Plant Physiol.123,939-948.

Martin MT Cruces MA,Alcalde M,Plou FJ,Bernabe M,Ballesteros A(2004)用淀粉作为供体合成由固定的环式糊精葡糖基转移酶催化的麦芽寡糖基呋喃果糖(Synthesis ofmaltooligosyl fructofuranosides catalyzed by immobilized cyclodextrin glucosyltransferase usingstarch as donor).Tetrahedron 60,529-534.

Mattes R,Klein K,Schiweek H,Kunz M,Munir M(1995)非龋齿糖替代品的制备(Preparation of acariogenic sugar substitutes)。国际专利说明书WO 95/20047 A3公开于1995年7月27日。[USA 2003207437 2003年11月6日;USA 2003203468 2003年10月30日;USA 2003087416 2003年5月8日;USA 5985622 199年11月16日;USA5786140 1998年7月27日;AU 688848 1998年3月19日;PCT/EP95/00165提交于199年1月18日;DE 4414 185提交于1994年4月22日;DE 44 01 451提交于1994年1月19日](授权给SudzuckerAktiengellschaft).

Matzke AJM,Mateke MA(1998)植物转基因的位置效应和外遗传沉默(Position effectsand epigenetic silencing of plant transgenes).Current Opinion in Plant Biology 1,142-148.

Moore PH(1995)在甘蔗茎中暂时并间歇调节蔗糖累积(Temporal and spatial regulationof sucrose accumulation in the sugarcane stem).Australian Journal of Plant Physiology 22,661-679.

Nguyen-Quoc B,Foyer CH(2001)参与无效循环的转化酶和蔗糖合酶在番茄果实蔗糖代谢中的作用(A role for′futile cycles′involving invertase and sucrose synthase in sucrosemetabolism of tomato fruit).Journal of Experimental Botany 52,881-889.

Park HE,Park NH,Kim MJ,Lee TH,Lee HG,Yang JY,Cha J(2003)用产左聚糖微杆菌ATCC15953的果聚糖蔗糖酶酶合成果糖基寡糖(Enzymatic synthesis of fructosyloligosaccharides by levansucrase from Microbacterium laevaniformans ATCC 15953).Enzymeand Microbial Technology 32,820-827.

Peach C,Velten J(1991)T-DNA启动子驱动的CAT和GUS受体基因的转基因表达可变性(位置效应)(Transgene expression variability(position effect)of CAT and GUS reporter genesdriven by linked divergent T-DNA promoters).Plant Molecular Biology 17,49-60.

Plou FJ,Martin MT,de Segura AG,Alcalde M,Ballesteros A(2002)葡糖基转移酶作用于淀粉或蔗糖以合成寡糖(Glucosyltransferases acting on starch or sucrose for the synthesisof oligosaccharides).Canadian Journal of Chemistry-Revue Canadienne De Chimie 80,743-752.

Polowick PL,Vandenberg A,Mahon JD(2002)转基因豌豆,(Pisum sativum L.)植物异型杂交的产地评估(Field assessment of outcrossing from transgenic pea(Pisum sativumL.)plants).Transgenic Research 11,515-519.

Saha BC(2004)对来自乳酸菌的新甘露醇进行纯化和定性(Purification andcharacterization of a novel mannitol dehydrogenase from Lactobacillus intermedius).Biotechnology Progress 20,537-542.

Sambrook J,Russell DW(2001)《分子克隆:实验手册》第3版(Molecular Cloning:ALaboratory Manual,3rd edn),New York:Cold Spring Harbor Laboratory Press.

Sinha AK,Hofmann MG,Romer U,Kockenberger W,Elling L,Roitsch T(2002)可代谢和不可代谢的糖活化产物区分番茄的信号转导途径(Metabolizable andnon-metabolizable sugars activate different signal transduction pathways in tomato).Plant Physiol.128,1480-1489.

Small I,Wintz H,Akashi K,Mireau H(1998)一石二鸟:编码靶向两个或多个区室的产物的基因(Two birds with one stone:genes that encode products targeted to two or morecompartments).Plant Molecular Biology 38,265-277.

Tadesse Y,Sagi L,Swennen R,Jacobs M(2003)通过微粒攻击最优化转化条件和转基因高粱(Sorghum bicolor)的生产(Optimisation of transformation conditions and production oftransgenic sorghum(Sorghum bicolor)via microparticle bombardment).Plant Cell Tissue andOrgan Culture 75,1-18.

van der Veen BA,Potocki-Veronese G,Albenne C,Joucla G,Monsan P,Remaud-Simeon M(2004)联合构建以增强淀粉蔗糖酶的表现:构建、选择和筛选活性增强的变体库(Combinatorial engineering to enhance amylosucrase performance:construction,selection,and screening of variant libraries for increased activity).FEBS Letters 560,91-97.

Veronese T,Perlot P(1999)通过普利茅斯沙雷氏菌ATCC 15928的蔗糖异构酶了解蔗糖转化机制(Mechanism of sucrose conversion by the sucrose isomerase of Serratia plymuthicaATCC 15928).Enzyme.Microb.Technol.24,263-269.

Vidal JR,Kikkert JR,Wallace PG,Reisch BI(2003)高效生物弹射共转化和含有npt-II和抗菌肽基因的谐同耐葡萄(Vitis vinifera L.)的生产(High-efficiency biolisticco-transformation and regeneration of′Chardonnay′(Vitis vinifera L.)containing npt-II andantimicrcbial peptide genes).Plant Cell Reports 22,252-260.

Vitale A,Raikhel NV(1999)蛋白质究竟需要什么到达不同液泡?(What do proteinsneed to reach different vacuoles?)Trends in Plant Science 4,149-155.

Wu L,Birch RG(2004)确定高效蔗糖异构酶生物合成异麦芽糖的生产者分散泛菌UQ68J的性质(Characterisation of Pantoea dispersa UQ68J:producer of a highly efficientsucrose isomerase for isomaltulose biosynthesis).Journal of Applied Microbiology.(印刷中)

Wu L,Joshi CP,Chiang VL(2000)白杨,opulus tremuloides)木质部特异性纤维素合成酶基因响应机械应力(A xylem-specific cellulose synthase gene from aspen(Populustremuloides)is responsive to mechanical stress).Plant Journal 22,495-502.

Zhang CL,Chen DF,McCormac AC,Scott NW,Elliott MC,Slater A(2001)使用GFP受体作为甜菜(Beta vulgaris L.)农杆菌介导的转化的活标记(Use of the GFP reporter as avital marker for Agrobacterium-mediated transformation of sugar beet(Beta vulgaris L.)).Molecular Biotechnology 17,109-117.

Zhang S,Williams-Carrier R,Lemaux PG(2002)用发芽的幼苗诱出的体外茎分生组织培养物转化玉米自交物(Transformation of recalcitrant maize elite inbreds using in vitro shootmeristematic cultures induced from germinated seedlings).Plant Cell Reports 21,263-270.

Zhifang G,Loescher WH(2003)芹菜甘露糖6-磷酸还原酶在拟南芥中表达增强了耐盐性并导致甘露醇和葡糖基甘露醇二聚体的生物合成(Expression of a celery mannose6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesisof both mannitol and a glucosyl-mannitol dimer).Plant Cell and Environment 26,275-283.

序列表

<110>昆士兰大学(The University of Queensland)(美国之外的所有国家)

     R.G.伯奇(Birch,Robert G.)(仅美国)

     L.吴(Wu,Luguang)(仅美国)

    <120>提高产品产量的方法

<130>12179982

<140>未指定

<141>2004-05-12

<150>AU2003902253

<151>2003-05-12

<160>20

<170>PatentIn version 3.2

<210>1

<211>35

<212>DNA

<213>人工的

<220>

<223>靶向胞质的UQErw正向引物

<400>1

ggatccaaca atggcaaccg ttcagcaatc aaatg                       35

<210>2

<211>35

<212>DNA

<213>人工的

<220>

<223>靶向胞质的UQ14S正向引物

<400>2

ggatccaaca atggcaaccg ttcacaagga aagtg                       35

<210>3

<211>34

<212>DNA

<213>人工的

<220>

<223>靶向胞质的UQ68J正向引物

<400>3

ggatccaaca atggcaacga atatacaaaa gtcc                               34

<210>4

<211>28

<212>DNA

<213>人工的

<220>

<223>靶向胞质的UQErw反向引物

<400>4

ataggtacct tacttaaacg cgtggatg                                      28

<210>5

<211>30

<212>DNA

<213>人工的

<220>

<223>靶向胞质的UQ14S反向引物

<400>5

ataggtacct taccgcagct tatacacacc                                     30

<210>6

<211>30

<212>DNA

<213>人工的

<220>

<223>靶向胞质的UQ68J反向引物

<400>6

ataggtacct cagttcagct tatagatccc                                     30

<210>7

<211>111

<212>DNA

<213>人工的

<220>

<223>编码甜马铃薯sporamin修饰的ER信号和N端原肽(NTPP)的DNA

<400>7

atgaaggcct tcaccctcgc cctcttcctc gccctctccc tctacctcct cccgaacccg    60

gcccactccc gcttcaaccc gatccgcctc ccgaccaccc acgagccggc c            111

<210>8

<211>69

<212>DNA

<213>人工的

<220>

<223>编码马铃薯几丁质酶修饰的ER信号的DNA

<400>8

atgaggcttt gtaaattcac agctctctct tctctactat tttctctcct actgctttct    60

gcctcggcg                                                            69

<210>9

<211>36

<212>DNA

<213>人工的

<220>

<223>编码马铃薯几丁质酶C-末端前肽(CTPP)的DNA

<400>9

catagtatcg actaagagac cgttcagctt atagat                              36

<210>10

<211>987

<212>DNA

<213>蔗糖属(Saccharum sp.)

<220>

<221>启动子

<222>(1)..(987)

<223>启动子P67B的DNA序列

<400>10

gagctctcga tgggaggtgc tcgaagacat attagccaag tgtatggcaa gatgtttagc     60

tagtagctga ctgatagtgt aaacgatctc caatggggca agacatatta cctaaggcca    120

ggctggtttt tgcaagtttg agtaggatat agagattctc gtgcgagttg taaacgatct    180

ccaatggggc aagacatcct aacctatata tagtgaaggg gcagtagctg attgagaatc    240

aaccaatcaa gcacaatata atttattaat tttttattca aacccaattt tttccttttc    300

caaccctaat tatagttctc cttttgcctc taggacaaat tgacgtgttc ctggtatccc    360

tgggtaggca ttcataggga tacgggtatt tcctgcaaaa aagcgattaa gctggcttct    420

aaaactggct aggccggatt ctgtggcctt cactaccagg tgattttcat gtgatccgtg    480

cattctagca ctttgctgtg taacccaaac tgatgtcgac aactataaat atgctacttg    540

caggatgtta tcatgacaca actccctaat ctacgaagcc taagtttagt tttgctcgga    600

gacaagcaat tgtggccagt cactttagct acgtcagagg gtagtgggag cagttgcgtc    660

gttggattga aaacaggtgg atcatattag atattattca catgaacagt aaatgtggta    720

cagtaacttc gcaaacaata aaatctgtca caatttatta gtgcactcct ctgacgtaaa    780

tgcttctacg tcagaggatt tgagtccgag gggtgctgca cccatcacta atgacggtct    840

ttacccatca tcatggacca ttgttcacat ccatgctatc actgtcgtcc tgtccatgca    900

ctgcagccct ctataaatac tggcacccct cccccgttca cagatcacac cacacaagca    960

agaaataaac ggtagctgca taactag                                        987

<210>11

<211>31

<212>DNA

<213>人工序列

<220>

<223>用于靶向液泡的UQ68J正向引物(NTPP、或NTPP+CTPP构建物)

<400>11

gtagatctcg caacgaatat acaaaagtcc g                                    31

<210>12

<211>27

<212>DNA

<213>人工的

<220>

<223>用于靶向液泡的UQ68J反向引物(NTPP构建物)

<400>12

aagagctcag ttcagcttat agatccc                                         27

<210>13

<211>45

<212>DNA

<213>人工的

<220>

<223>用于靶向液泡的带有6x His标记的UQ68J反向引物(NTPP构建物)

<400>13

aagagctcag tggtggtggt ggtggtggtt cagcttatag atccc                     45

<210>14

<211>45

<212>DNA

<213>人工的

<220>

<223>CTPP构建物的UQ68J反向引物

<400>14

gagctcacat agtatcgact aagagaccgt tcagcttata gatcc                    45

<210>15

<211>63

<212>DNA

<213>人工的

<220>

<223>带有6x His标记的CTPP构建物的UQ68J反向引物

<400>15

gagctcagtg gtggtggtgg tggtgcatag tatcgactaa gagaccgttc agcttataga    60

tcc                                                                  63

<210>16

<211>24

<212>DNA

<213>人工的

<220>

<223>几丁质酶ER前导肽正向引物

<400>16

aaggatccaa tgaggctttg aaaa                                           24

<210>17

<211>26

<212>DNA

<213>人工的

<220>

<223>几丁质酶ER前导肽反向引物

<400>17

aaagatctcg ccgaggcaga aagcag                                         26

<210>18

<211>23

<212>DNA

<213>人工的

<220>

<223>启动子67正向引物

<400>18

tggagctcga tgggaggtgc tcg                                            23

<210>19

<211>29

<212>DNA

<213>人工的

<220>

<223>启动子67反向引物

<400>19

atggatcctg tactagttat ggcagctac                                      29

<210>20

<211>49

<212>DNA

<213>人工的

<220>

<223>区分启动子P67B和启动子P67A的探针

<400>20

ctgctgaatc aagaacaacc ctaggtgcac ctgtccccat agagtccca                49

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号