首页> 中国专利> 基于BP神经网络和遗传算法GA的激光焊接温度场有限元模拟方法

基于BP神经网络和遗传算法GA的激光焊接温度场有限元模拟方法

摘要

本发明公开了一种基于BP神经网络和遗传算法GA的激光焊接温度场有限元模拟方法,包括以下步骤:S1、激光焊接有限元模拟:选用由高斯面热源和圆柱体热源构成的面体组合热源模型,选取面热源热能分配系数、面热源作用半径和有效热功率系数作为设计变量,设计正交试验表,计算不同参数下面体组合热源模型的有限元模拟误差;S2、BP神经网络的建立、训练和测试;S3、遗传算法求解优化参数,并确定优化结果可行性,若存在较大差异则重新进行BP神经网络的构建和遗传算法优化求解。本发明可以提高传统焊接温度场模拟中的效率和精度,易于得到模拟最优解。

著录项

  • 公开/公告号CN106909727A

    专利类型发明专利

  • 公开/公告日2017-06-30

    原文格式PDF

  • 申请/专利权人 武汉理工大学;

    申请/专利号CN201710090680.4

  • 发明设计人 宋燕利;华林;徐勤超;余成;

    申请日2017-02-20

  • 分类号G06F17/50;G06N3/04;G06N3/12;

  • 代理机构湖北武汉永嘉专利代理有限公司;

  • 代理人唐万荣

  • 地址 430070 湖北省武汉市洪山区珞狮路122号

  • 入库时间 2023-06-19 02:44:13

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-05-05

    授权

    授权

  • 2017-07-25

    实质审查的生效 IPC(主分类):G06F17/50 申请日:20170220

    实质审查的生效

  • 2017-06-30

    公开

    公开

说明书

技术领域

本发明涉及一种激光焊接有限元模拟方法,具体涉及一种基于BP神经网络和遗传算法GA的激光焊接温度场有限元模拟方法。

背景技术

激光焊接凭借其高能量密度、热影响区小、变形小、焊接灵活性强等优势已经被广泛应用于连接工艺中。在汽车工业中,激光拼焊板的使用是实现汽车轻量化的重要手段,它不仅能够满足车身结构各部位对材质、厚度、强度和耐腐蚀性等的要求,并且可以提升车身装配精度,提高刚度,减少零件数目,提高车身一体化程度。随着对焊接质量和焊接生产效率的重视,有限元模拟凭借其低成本、高效率等优势被广泛应用于重现焊接的全过程。而对焊接温度场的模拟是合理选择焊接方法、工艺参数以及后续焊接冶金分析和应力分析的前提与基础,因此对焊接温度场的精确模拟具有重要意义。

热源模型是影响激光焊接温度场模拟准确性的关键因素,材料对激光的热能吸收率以及被吸收的热能在材料上的分布情况是模拟前需要解决的问题。由于热源参数与模拟结果之间具有不确定的关系,通常在焊接温度场模拟中,需要根据焊接试验结果反复试算,以修正热源相关参数,从而达到对焊接温度场的近似模拟。然而,这种方法效率极低,且很难得到最优的热源参数值。

发明内容

为了解决传统模拟方法的低效率与热源参数值难得到最优解的技术问题,本发明提供一种基于BP神经网络和遗传算法GA的激光焊接温度场有限元模拟方法,它可以提高传统焊接温度场模拟中的效率,易于得到模拟最优解。

本发明解决其技术问题所采用的技术方案是:

一种基于BP神经网络和遗传算法GA的激光焊接温度场有限元模拟方法,其特征在于,该方法包括以下步骤:

S1、激光焊接有限元模拟

S101、选取热源模型:选用由高斯面热源和圆柱体热源构成的面体组合热源模型,选取面热源热能分配系数f1、面热源作用半径rc和有效热功率系数η作为设计变量;

S102、计算不同参数下面体组合热源模型的有限元模拟误差:设计正交试验表,步骤S101中所选取的设计变量即为正交实验表的因素,在各设计变量的取值范围内选取若干个水平,确定试验的组数和各试验组的具体参数,实施正交试验方案,根据各试验组的参数建立相应的面体组合热源模型,选取所有的面体组合热源模型对激光焊接温度场进行有限元模拟,若有限元模拟的熔池边界线与实验测量的熔池边界线关于焊缝中心线对称,则模拟与实验吻合,在焊缝中心线上选取q个点,计算各试验组的有限元模拟误差Δerrxi为焊缝中心线上点i到有限元模拟的熔池边界线的横向距离,yi为焊缝中心线上点i到实验测量的熔池边界线的横向距离;

S2、建立BP神经网络模型,并对该BP神经网络进行训练与测试:先随机选取部分有限元模拟误差Δerr作为训练样本用来训练BP神经网络,直至训练样本的网络预测输出值与实际值的均方误差限定在允许误差范围内,再用剩下的有限元模拟误差Δerr作为测试样本检测神经网络的预测精度,直至测试样本的网络预测输出值与实际值的均方误差限定在允许误差范围内,得到具有一定预测能力的BP神经网络;

S3、用遗传算法求解优化参数:种群个体由面热源热能分配系数f1、面热源作用半径rc和有效热功率系数η组成,选用有限元模拟误差Δerr作为个体的适应度,采用遗传算法获取一组效果最优个体,即得到一组效果最优的参数组合,使用该最优参数组合下的热源模型进行激光焊接有限元模拟,将模拟结果与实验结果进行对比,确定优化结果可行性,若存在较大差异则重新进行BP神经网络的构建和遗传算法优化求解。

按上述技术方案,步骤S101中,由高斯面热源函数可得节点(x,y)处面体热源模型中等离子体云在试样上热流密度分布规律公式为

由圆柱体热源函数可得节点(x,y,z)处匙孔效应的热流密度公式为

式中,f1为面热源热能分配系数,f2为体热源热能分配系数,且f1+f2=1,rc为面热源有效作用半径,rv为体热源有效作用半径,h为热源作用深度,Q为激光器热流输出量,η为试样吸收激光的有效热功率系数,(x,y,z)表示以面热源中心为原点的节点坐标。

按上述技术方案,步骤S102中,取1/2对称模型进行计算,在焊缝区加大网格密度,远离焊缝区则选择较低的网格密度,在焊接过程中,材料与周围空气存在温差会发生对流换热和热辐射,用一个总的换热系数H表示热能损失,其计算公式为

式中,T为材料表面实时温度,Tv为周围环境温度,a=2.2,b=0.25,c=4.6×10-8

按上述技术方案,步骤S2中BP神经网络模型的建立包括以下步骤:将设计变量f1、rc和η作为输入层,Δerr作为输出层,隐含层的神经元个数用公式式中,n为输入层神经元的个数,m为输出层神经元的个数,p为常数,且1<p<10;

选择函数tansig作为隐含层的传递函数,线性函数purelin作为输出层的传递函数,

purelin(x)=x。

按上述技术方案,步骤S2中,为消除各维数据之间数量级差别,避免过大或过小的权重导致数值溢出,BP神经网络的训练与测试的归一化处理公式为

式中,xk表示需要归一化的数据,xmin表示数据中的最小值,xmax表示数据中的最大值。

按上述技术方案,步骤S3中,遗传算法包括选择运算,第j个个体被选中的概率pj计算公式为

式中,Fj为个体的适应度值,N为种群个体的数量。

按上述技术方案,步骤S3中,遗传算法包括交叉运算,为了使染色体上的任一位置均可交叉重组,使用非一致算术交叉算子,表达式为

式中,mks和mls分别表示染色体mk和染色体ml的第s(s=1、2、3)个位置,M为[0,1]之间的随机数。

按上述技术方案,步骤S3中,遗传算法包括变异运算,随机选择一个个体,并且随机的改变染色体上某个位置的值,采用如下变异公式进行变异操作

式中,mmax为mks的上界值,mmin为mks的下界值,g为当前进化的代数,Gmax为最大进化次数,r为[0,1]之间的随机数。

本发明,具有以下有益效果:通过BP神经网络与遗传算法GA对激光焊接有限元模拟中的热源模型参数进行优化,选取面体热源模型对激光焊接温度场进行有限元模拟,将模拟中难以确定并且对结果影响较大的热源有效功率系数、热能分配系数和热源作用半径作为输入量,利用正交试验分析方法确定激光焊接模拟中有代表性的热源参数组合,进行激光焊接温度场模拟,得到不同试验分组的有限元模拟误差,以有限元模拟结果的误差作为输出量对BP神经网络进行训练,最终得到对有限元模拟误差预测精度较高的神经网络,并形成结合神经网络和遗传算法的参数优化方法,采用遗传算法优化激光焊接模拟中热源模型的参数,利用BP神经网络建立的误差近似计算模型以减少优化过程中反复进行数值模拟所带来的大量计算,以得到最优的热源模型参数,实现了对激光焊接温度场的高效精确模拟。

附图说明

下面将结合附图及实施例对本发明作进一步说明,附图中:

图1为本发明实施例中有限元模拟与实验熔池的对比图。

图2为本发明实施例中训练样本的网络预测输出与实际值对比图。

图3为本发明实施例中测试样本的网络预测输出与实际值对比图。

图4为本发明实施例中最优个体的适应度曲线图。

图5为本发明实施例中参数优化后的有限元模拟与实验熔池对比图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。

在本发明的较佳实施例中,一种基于BP神经网络和遗传算法GA的激光焊接温度场有限元模拟方法,该方法包括以下步骤:

S1、激光焊接有限元模拟

S101、选取热源模型:选用由高斯面热源和圆柱体热源构成的面体组合热源模型,选取面热源热能分配系数f1、面热源作用半径rc和有效热功率系数η作为设计变量;

S102、计算不同参数下面体组合热源模型的有限元模拟误差:设计正交试验表,步骤S101中所选取的设计变量即为正交实验表的因素,在各设计变量的取值范围内选取若干个水平,确定试验的组数和各试验组的具体参数,实施正交试验方案,根据各试验组的参数建立相应的面体组合热源模型,选取所有的面体组合热源模型对激光焊接温度场进行有限元模拟,若有限元模拟的熔池边界线与实验测量的熔池边界线关于焊缝中心线对称,则模拟与实验吻合,在焊缝中心线上选取q个点,计算各试验组的有限元模拟误差Δerrxi为焊缝中心线上点i到有限元模拟的熔池边界线的横向距离,yi为焊缝中心线上点i到实验测量的熔池边界线的横向距离;

S2、建立BP神经网络模型,并对该BP神经网络进行训练与测试:先随机选取部分有限元模拟误差Δerr作为训练样本用来训练BP神经网络,直至训练样本的网络预测输出值与实际值的均方误差限定在允许误差范围内,再用剩下的有限元模拟误差Δerr作为测试样本检测神经网络的预测精度,直至测试样本的网络预测输出值与实际值的均方误差限定在允许误差范围内,得到具有一定预测能力的BP神经网络;

S3、用遗传算法求解优化参数:种群个体由面热源热能分配系数f1、面热源作用半径rc和有效热功率系数η组成,选用有限元模拟误差Δerr作为个体的适应度,采用遗传算法获取一组效果最优个体,即得到一组效果最优的参数组合,使用该最优参数组合下的热源模型进行激光焊接有限元模拟,将模拟结果与实验结果进行对比,确定优化结果可行性,若存在较大差异则重新进行BP神经网络的构建和遗传算法优化求解。

在本发明的优选实施例中,步骤S101中,由高斯面热源函数可得节点(x,y)处面体热源模型中等离子体云在试样上热流密度分布规律公式为

由圆柱体热源函数可得节点(x,y,z)处匙孔效应的热流密度公式为

式中,f1为面热源热能分配系数,f2为体热源热能分配系数,且f1+f2=1,rc为面热源有效作用半径,rv为体热源有效作用半径,h为热源作用深度,Q为激光器热流输出量,η为试样吸收激光的有效热功率系数,(x,y,z)表示以面热源中心为原点的节点坐标。

在本发明的优选实施例中,步骤S102中,取1/2对称模型进行计算,在焊缝区加大网格密度,远离焊缝区则选择较低的网格密度,在焊接过程中,材料与周围空气存在温差会发生对流换热和热辐射,用一个总的换热系数H表示热能损失,其计算公式为

式中,T为材料表面实时温度,Tv为周围环境温度,a=2.2,b=0.25,c=4.6×10-8

在本发明的优选实施例中,步骤S2中BP神经网络模型的建立包括以下步骤:将设计变量f1、rc和η作为输入层,Δerr作为输出层,隐含层的神经元个数用公式式中,n为输入层神经元的个数,m为输出层神经元的个数,p为常数,且1<p<10;

选择函数tansig作为隐含层的传递函数,线性函数purelin作为输出层的传递函数,

purelin(x)=x。

在本发明的优选实施例中,步骤S2中,为消除各维数据之间数量级差别,避免过大或过小的权重导致数值溢出,BP神经网络的训练与测试的归一化处理公式为

式中,xk表示需要归一化的数据,xmin表示数据中的最小值,xmax表示数据中的最大值。

按上述技术方案,步骤S3中,遗传算法包括选择运算,第j个个体被选中的概率pj计算公式为

式中,Fj为个体的适应度值,N为种群个体的数量。

在本发明的优选实施例中,步骤S3中,遗传算法包括交叉运算,为了使染色体上的任一位置均可交叉重组,使用非一致算术交叉算子,表达式为

式中,mks和mls分别表示染色体mk和染色体ml的第s(s=1、2、3)个位置,M为[0,1]之间的随机数。

在本发明的优选实施例中,步骤S3中,遗传算法包括变异运算,随机选择一个个体,并且随机的改变染色体上某个位置的值,采用如下变异公式进行变异操作

式中,mmax为mks的上界值,mmin为mks的下界值,g为当前进化的代数,Gmax为最大进化次数,r为[0,1]之间的随机数。

以下举例说明本发明。本实施例是基于BP和GA算法,运用ANSYS对激光焊接进行有限元模拟。本实施例以DP600高强钢激光拼焊板为研究对象,利用人工神经网络在不确定性关系之间的拟合能力,通过正交试验设计不同热源参数组合,构成神经网络的训练样本,建立出热源参数与有限元模拟误差之间的映射关系,并将具有并行随机搜索和全局寻优能力的遗传算法用来求解参数优化问题,实现了对激光焊接温度场的精确模拟。其包括以下步骤:

S1、激光焊接有限元模拟

S101、选取热源模型:所采用的试验材料为50mm×25mm×1mm的DP600高强钢板,焊接设备为JKD5120型连续激光焊接机,焊接主要工艺参数如表1所示,

表1

选用由高斯面热源和圆柱体热源构成的面体组合热源模型,由高斯面热源函数可得节点(x,y)处面体热源模型中等离子体云在试样上热流密度分布规律公式为

由圆柱体热源函数可得节点(x,y,z)处匙孔效应的热流密度公式为

其中,体热源有效作用半径rv为激光器光斑直径,热源作用深度h为试样板厚,面热源热能分配系数f1根据经验确定在0.4~0.6之间,面热源作用半径rc根据焊接试验得到的焊缝宽度确定在1.2mm~1.6mm之间,试样对激光吸收的有效热功率系数η确定在0.65~0.75之间;

S102、有限元模型的建立:取1/2对称模型进行计算,在焊缝区加大网格密度,远离焊缝区则选择较低的网格密度,在焊接过程中,材料与周围空气存在温差会发生对流换热和热辐射,用一个总的换热系数表示热能损失,其计算公式为

S103、计算不同参数热源模型的有限元模拟误差:在前文得到的面热源热能分配系数f1、面热源作用半径rc和有效热功率系数η的取值范围内,各取3个值,按L18(33)正交表设计18次有限元模拟,其中,各因素与水平如表2所示,

表2

使用软件ANSYS对正交试验各组进行激光焊接有限元模拟,焊接过程时间为1s,冷却时间为550s,焊接过程使用250个载荷步,冷却过程使用110个载荷步,以其中一组试验为例(面热源热能分配系数0.6,面热源作用半径1.6mm,有效热功率系数0.65),说明有限元模拟误差的计算方法,图1所示为该组试验有限元模拟的1500℃等温区(即熔池)与实际测量的熔池对比图,若有限元模拟的熔池边界线与实验测量的熔池边界线关于焊缝中心线L对称,则模拟与实验吻合,为了对模拟误差进行定量评价,从A点到B点均匀取点21个(即q=21),用i(i=1,2,3,…,21,A点为1,B点为21)表示,并依次计算各点到有限元模拟熔池边界线的横向距离xi(i=1,2,3,…,21)以及各点到实验测量熔池边界线的横向距离yi(i=1,2,3,…,21),用表示模拟误差,通过对上述各组热源参数进行有限元模拟和误差计算,得到BP神经网络训练与测试的样本,如表3所示,

表3

S2、BP神经网络的建立、训练和测试

S201、建立BP神经网络模型

(1)确定网络结构:隐含层的神经元个数用经验公式

n取3,m取1,综合考虑网络精度与计算时间,选取3层BP神经网络结构,且隐含层神经元个数为6;

(2)选取传递函数:选择输出范围为[-1,1]的函数tansig作为隐含层的传递函数,线性函数purelin作为输出层的传递函数;

S202、BP神经网络的的训练与测试:随机选取正交实验的14组数据作为训练样本,用来训练神经网络,剩下的4组作为测试样本,用来检测神经网络预测精度,对神经网络的训练和测试样本如表3所示;

BP神经网络通过训练样本的训练后,训练样本的网络预测输出与实际值对比如图2所示,预测输出与实际值的均方误差MSE值为0.0793,神经网络会出现过拟合的情况,仅通过比较训练样本的MSE还不足以证明神经网络具有预测能力,还需要检验网络对测试样本的预测误差,测试样本的网络预测输出与实际值对比如图3所示,其均方误差MSE值为0.0081;

S3、遗传算法求解参数优化问题

S301、种群初始化:种群中个体编码使用实数编码,每个个体由面热源热能分配系数f1、面热源作用半径rc和有效热功率系数η组成,也就是,染色体的长度为3,相应的染色体可以用{f1,rc,η}表示;

S302、适应度函数:有限元模拟的误差Δerr作为个体的适应度;

S303、根据遗传算法的选择运算、交叉运算和变异运算优化求解,获取一组效果最优个体,即得到一组效果最优的参数组合;

选择操作:第j个个体被选中的概率pj计算公式为

式中Fi为个体的适应度值,N为种群个体的数量;

交叉操作:为了使染色体上的任一位置均可交叉重组,使用非一致算术交叉算子,表达式为

式中,mks和mls分别表示染色体mk和染色体ml的第s(s=1、2、3)个位置,M为[0,1]之间的随机数;

变异操作:随机选择一个个体,并且随机的改变染色体上某个位置的值,采用如下变异公式进行变异操作

式中,mmax为mks的上界值,mmin为mks的下界值,g为当前进化的代数,Gmax为最大进化次数,r为[0,1]之间的随机数;

S304、优化结果及分析:利用遗传算法优化热源参数时的种群规模为size=20,进化次数为G=100,交叉概率为0.4,变异概率为0.2,面热源热能分配系数f1、面热源作用半径rc和有效热功率系数η的取值范围分别为[0.4,0.6]、[1.2,1.6]和[0.65,0.75],经过100次进化,最优个体的适应度值(此处即为有限元模拟的误差)趋于稳定,如图4所示,得到最优的热源参数,如表4所示。

表4

有效热功率系数η0.56771.34430.7017

使用优化后的热源参数进行激光焊接有限元模拟,模拟结果与实验结果对比如图5所示,计算得到的模拟误差为0.2462,结果表明优化后的热源参数能大幅提高激光焊接有限元模拟的精度。

应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号