首页> 中国专利> 一种基于增强响应灵敏度的多体系统参数识别方法

一种基于增强响应灵敏度的多体系统参数识别方法

摘要

本发明公开了一种基于增强响应灵敏度的多体系统参数识别方法,该方法包括:构建多体系统的动力学方程和待识别参数最小二乘优化方程;载入测量数据求解多体系统的动力学方程;求取多体系统的响应灵敏度;建立迭代参数的最小二乘方程;引入Tikhonov正则化计算迭代参数;对待识别参数进行更新;再次求解多体系统的动力学方程;引入置信域;判断到更新后的待识别参数符合预设条件,输出更新后的待识别参数。通过使用本发明,可以准确识别多体系统的参数,并且具有良好的抗噪性。本发明可广泛应用于参数识别领域。

著录项

  • 公开/公告号CN113806886A

    专利类型发明专利

  • 公开/公告日2021-12-17

    原文格式PDF

  • 申请/专利权人 中山大学;

    申请/专利号CN202111070773.3

  • 发明设计人 吕中荣;陈敏;刘广;汪利;

    申请日2021-09-13

  • 分类号G06F30/17(20200101);G06F119/14(20200101);

  • 代理机构44367 深圳市创富知识产权代理有限公司;

  • 代理人高冰

  • 地址 510275 广东省广州市海珠区新港西路135号

  • 入库时间 2023-06-19 13:45:04

说明书

技术领域

本发明涉及参数识别领域,尤其涉及一种基于增强响应灵敏度的多体系统参数识别方法。

背景技术

典型的多体系统包括运载器、航天器、机器人、各种机械装置等。多体系统广泛存在于工业生产与日常生活中,对于多体系统的模型建立、优化设计、测试诊断过程等,识别其系统参数都显得尤为重要。多体系统的参数识别主要是根据系统的响应识别出系统的几何参数和惯性参数。传统的参数识别方法主要缺陷在于形成的是有偏估计,识别准确度不高。

发明内容

为了解决上述技术问题,本发明的目的是提供一种基于增强响应灵敏度的多体系统参数识别方法,准确识别多体系统的参数,并且具有良好的抗噪性。

本发明所采用的技术方案是:一种基于增强响应灵敏度的多体系统参数识别方法,包括以下步骤:

S1、基于绝对坐标方法构建多体系统的动力学方程,并建立待识别参数最小二乘优化方程;

S2、载入测量数据并基于增广法求解多体系统的动力学方程,计算得到系统响应和响应残差;

S3、基于中心差分求取多体系统的响应灵敏度;

S4、基于待识别参数最小二乘优化方程建立迭代参数的最小二乘方程;

S5、引入Tikhonov正则化对迭代参数的最小二乘方程进行处理,结合响应残差和相应灵敏度计算得到迭代参数;

S6、根据迭代参数对待识别参数进行更新,得到更新后的待识别参数;

S7、基于更新后的待识别参数重新求解多体系统的动力学方程,计算得到新系统响应和新响应残差。

S8、引入置信域计算一致性指标并与预设置信因子比较,调整迭代参数;

S9、判断到迭代参数与更新后的待识别参数的比值超出误差容限内,输出更新后的待识别参数,否则返回步骤S2。

优选地,所述多体系统的动力学方程公式如下:

上式中,b∈R

对于位置φ∈R

利用传统增广法求解方程。由于式是指标3的微分代数方程,先对中的约束方程关于时间t求二阶导,将其化为指标1的微分代数方程,并写成如下的等价形式:

其中,

由式中后两式直接增广计算,得到

由的第一式和即构成常规的一阶常微分方程,

上式可以利用Matlab的ode进行求解。

然而,由于上述方法只考虑了加速度形式的约束方程,所得到的响应未能严格符合位移或者速度的约束方程,会引起约束违约的问题。为了进行违约修正,通过引入人工阻尼将不稳定的约束方程

从而,的第三式变为

再利用Matlab求解即可。

对于阻尼参数的选取,提出了参数α和β的一种自动选取方法,能得到很好的数值稳定性,即,

其中,h为求解微分方程的离散差分格式的步长。

优选地,在典型参数识别流程中,对于一组实际测量得到的数据

上式中,

方程中的R(b)通常是关于b的非线性隐函数,于是需要利用迭代法求解如上的非线性最小二乘问题。接下来的关键就在于如何从已知的参数

优选地,

上式中,

具体地,基于梯度法解决反问题,灵敏度分析是不可或缺的。由于直接利用传统增广法求解多体系统的灵敏度复杂耗时,故采用有限差分法求取。本文中心差分求取响应灵敏度,即,

其中,ε是一个充分小的正数;而q(t,b

优选地,至此,即可得到关于Δb的一个线性最小二乘问题,所述迭代参数的最小二乘方程公式如下:

上式中,Δb表示迭代参数,

然而,问题通常是不适定的,因此需要引入Tikhonov正则化进行处理,所述引入Tikhonov正则化对迭代参数的最小二乘方程进行处理,公式表示如下:

上式中,μ≥0为正则化参数,||·||

上式中,I为单位矩阵。正则化参数μ的值通常通过L曲线法选取,将其记为

优选地,通过线性化

良好的一致性指标应该使得

从而需要选取合适的δ使得一致性条件满足。

满足置信域的条件下,响应R(b)通常是关于b的光滑函数,且至少满足

以及

从上可知,通过适当的增加正则化参数μ,可以使迭代更新Δb

最后,更新待识别的参数b

本发明方法及系统的有益效果是:本发明基于增广法准确对多体系统的动力学方程进行求解,准确得到系统响应,通过引入置信域构成增强响应灵敏度方法,结合系统响应对多体系统进行参数识别,具有良好的抗噪性、稳定性和准确性。

附图说明

图1是本发明一种基于增强响应灵敏度的多体系统参数识别方法的步骤流程图;

图2是本发明具体实施例平面曲柄连杆机构的结构示意图。

具体实施方式

下面结合附图和具体实施例对本发明做进一步的详细说明。对于以下实施例中的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。

参照图1和图2,第一具体实施例以平面曲柄连杆机构为例说明识别过程,曲柄连杆机构广泛存在于机械领域,比如常见的有活塞发动机、往复泵、往复式活塞压缩机等。如图2所示,单缸内燃机的曲柄连杆机构部分的模型。l

从而,系统的广义质量矩阵为

M=diag[m

其中,J

待识别的系统参数取为曲柄和连杆的转动惯量b=[J

其中,

取系统的广义坐标为q=[x

M=diag[m

系统所受的外力矢量为:

Q=[0,-m

系统的约束方程为:

Φ

Φ

Φ=[Φ

相应的Jacobian矩阵为:

结合动力学方程,便得到平面曲柄连杆机构的动力学方程。

设真实系统的参数如下,l

利用传统增广法求解其动力学方程。由于多体系统动力学方程是指标3的微分代数方程,先对中的约束方程关于时间t求二阶导,将其化为指标1的微分代数方程,并写成如下的等价形式:

其中,

由式中后两式直接增广计算,得到:

由的第一式和即构成常规的一阶常微分方程,

上式可以利用Matlab的ode进行求解。

然而,由于上述方法只考虑了加速度形式的约束方程,所得到的响应未能严格符合位移或者速度的约束方程,会引起约束违约的问题。为了进行违约修正,通过引入人工阻尼将不稳定的约束方程

从而,的第三式变为:

再利用Matlab求解即可。

对于阻尼参数的选取,即,

其中,h为求解微分方程的离散差分格式的步长。

在典型参数识别流程中,设定初始的系统待识别参数b,定义权重矩阵W,定义误差容限tol,设定最大迭代步数Nmax,设定置信域流程的最大迭代步数Ntr。对于一组实际测量得到的数据

其中,

方程中的R(b)通常是关于b的非线性隐函数,于是需要利用迭代法求解如上的非线性最小二乘问题。接下来的关键就在于如何从已知的参数

其中,

具体地,基于梯度法解决反问题,灵敏度分析是不可或缺的。由于直接利用传统增广法求解多体系统的灵敏度复杂耗时,故采用有限差分法求取。本实施例中心差分求取响应灵敏度,即,

其中,ε是一个充分小的正数;而q(t,b

至此,即可得到关于Δb的一个线性最小二乘问题,如下所示,

然而,问题通常是不适定的,因此需要引入Tikhonov正则化进行处理,可得,

其中,μ≥0为正则化参数,||·||

上式中,I为单位矩阵。正则化参数μ的值通常通过L曲线法选取,将其记为

部分的分析是通过线性化

良好的一致性指标应该使得

从而需要选取合适的δ使得一致性条件满足。

满足置信域的条件下,可知,响应R(b)通常是关于b的光滑函数,且至少满足

以及

从上可知,通过适当的增加正则化参数μ,可以使迭代更新Δb

更新待识别的参数b

利用增强响应灵敏度方法识别系统参数,结果如表2所示。

表2

以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号