首页> 外文会议>Applying photosynthesis research to improvement of food crops >Legume productivity and photosynthetic responses anticipated with climate change-insights from lupins
【24h】

Legume productivity and photosynthetic responses anticipated with climate change-insights from lupins

机译:羽扇豆对气候变化的洞察力预期豆类生产力和光合作用

获取原文
获取原文并翻译 | 示例

摘要

1. Legume crops, including narrow-leafed lupin, symbiotically fix nitrogen and provide high-protein vegetables and grains. 2. Soybean, pea and narrow-leafed lupin have shown both nitrogen fixation and grain yield responses to higher levels of CO_2. 3. Cowpea has genetic variation for heat tolerance at the floral bud and pod set growth stages, with heat stress tolerant vegetable and grain types bred and released as cultivars; this might be expected in other legumes. 4. The rate of net photosynthesis in narrow-leafed lupin is higher than in wheat, but lupin is more sensitive to water deficits and shade. 5. Pre-anthesis growth of lupin is slow in low-nitrogen soils because substantial amounts of the daily assimilated carbon are allocated to the nodulated roots to support nitrogen fixation. 6. Nitrate supply to lupin does not improve pre-anthesis growth, but reduces nitrogen fixation. 7. Elevated CO_2 increases biomass and the nitrogen fixed from the atmosphere in lupin under terminal drought. 8. The carbon 'cost' of fixing N_2 in nodules is high but varies significantly among symbioses. 9. Both plant and bacterial traits determine the 'cost'. 10. Lupin nitrogen fixation declines during post-anthesis because there is competition for photosynthate, which is directed to branch growth and grain-filling. 11. In lupin, translocation of assimilates, and particularly nitrogenous solutes, may limit grain yield and depress harvest index. 12. Conservation of translocated carbon by refixing respired CO_2 within developing legume pods could equate to as much as 20% of grain yield.
机译:1.包括窄叶羽扇豆在内的豆类作物共生固氮,提供高蛋白蔬菜和谷物。 2.大豆,豌豆和阔叶羽扇豆均显示出固氮和谷物产量对较高CO_2水平的响应。 3. Cow豆在花芽和荚果生长阶段具有耐热性的遗传变异,可以培育和释放耐热品种的蔬菜和谷物。这在其他豆类中也是可以预期的。 4.阔叶羽扇豆的净光合作用速率高于小麦,但羽扇豆对水分亏缺和阴影更为敏感。 5.在低氮土壤中,羽扇豆的花前生长缓慢,这是因为大量的每日同化碳分配到根瘤状根上以支持固氮。 6.向羽扇豆供应硝酸盐并不能改善花前的生长,但会降低固氮能力。 7.极端干旱条件下,羽扇豆中CO_2含量的升高增加了羽扇豆的生物量和氮素的含量。 8.在结节中固定N_2的碳“成本”很高,但在共生体之间差异很大。 9.植物和细菌性状都决定了“成本”。 10.在花后期,羽扇豆的固氮能力下降,因为存在光合产物的竞争,而光合产物直接作用于树枝的生长和籽粒的充实。 11.在羽扇豆中,同化物尤其是含氮溶质的转运可能会限制谷物的产量并降低收成指数。 12.通过在生长的豆科植物豆荚中固定呼吸的CO_2来保护易位碳,可相当于谷物产量的20%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号