【24h】

SYSTEM CONSIDERATIONS FOR MASKLESS LITHOGRAPHY

机译:光刻技术的系统注意事项

获取原文
获取原文并翻译 | 示例

摘要

Lithographic processes for printing device structures on integrated circuits (ICs) are the fundamental technology behind Moore's law. Next-generation techniques like maskless lithography or ML2 have the advantage that the long, tedious and expensive process of fabricating a unique mask for the manufactured chip is not necessary. However, there are some rather daunting problems with establishing ML2 as a viable commercial technology. The data rate necessary for ML2 to be competitive in manufacturing is not feasible with technology in the near future. There is also doubt that the competing technologies for the writing mechanisms and corresponding photoresist (or analogous medium) will be able to accurately produce the desired patterns necessary to produce multi-layer semiconductor devices. In this work, we model the maskless printing system from a signal processing point of view, utilizing image processing algorithms and concepts to study the effects of various real-world constraints and their implications for a ML2 system. The ML2 elements are discrete devices, and it is doubtful that their motion can be controlled to the level where a one-for-one element to exposed pixel relationship is allowable. Some level of sub-element resolution can be achieved with gray scale levels, but with the highly integrated manufacturing practices required to achieve massive parallelism, the most effective elements will be simple on-off switches that fire a fixed level of energy at the target medium. Consequently gray-scale level devices are likely not an option. Another problem with highly integrated manufacturing methods is device uniformity. Consequently, we analyze the redundant scanning array concept (RSA) conceived by Berglund et al. which can defeat many of these problems. We determine some basic equations governing its application and we focus on applying the technique to an array of low-energy electron emitters. Using the results of Monte Carlo simulations on electron beam profiles, we determine an empirical "impulse response" for each emitter and thus determine how each emission manifests itself in the final printed lithographic pattern. We apply methods to determine the best printable image for a variety of RSA geometries, including different levels of redundancy and achieved printer element spacing. We use concepts of total printing error to help quantify the printing quality. Through simulation, we report the effects of dead or missing elements. We also present some error analysis to account for non-ideal array positioning. Ultimately, we believe that printing quality should be the grounds for determining the necessary data rates to support competitive manufacturing with ML2 devices.
机译:用于在集成电路(IC)上印刷器件结构的光刻工艺是摩尔定律的基础技术。诸如无掩模光刻或ML2之类的下一代技术的优势在于,不需要为制造的芯片制造独特的掩模的漫长而乏味且昂贵的过程。但是,将ML2建立为可行的商业技术存在一些相当艰巨的问题。在不久的将来,使用技术使ML2在制造领域具有竞争力所必需的数据速率不可行。同样令人怀疑的是,用于写入机制和相应的光致抗蚀剂(或类似介质)的竞争技术将能够准确地产生生产多层半导体器件所需的所需图案。在这项工作中,我们从信号处理的角度对无掩模印刷系统进行建模,利用图像处理算法和概念研究各种现实世界约束的影响及其对ML2系统的影响。 ML2元件是分立的设备,可疑的是,它们的运动是否可以控制在允许一对一的元件与暴露像素关系的水平。可以通过灰度级实现某种程度的子元素分辨率,但是通过实现大规模并行性所需的高度集成的制造实践,最有效的元素将是简单的通断开关,在目标介质上发射固定水平的能量。因此,灰度级设备可能不是一种选择。高度集成的制造方法的另一个问题是器件均匀性。因此,我们分析了Berglund等人提出的冗余扫描阵列概念(RSA)。可以克服许多这些问题。我们确定了控制其应用的一些基本方程式,并将重点放在将该技术应用于一系列低能电子发射器上。使用电子束轮廓上的蒙特卡罗模拟结果,我们确定了每个发射器的经验“脉冲响应”,从而确定了每个发射在最终印刷的光刻图案中如何表现出来。我们采用各种方法来确定各种RSA几何形状的最佳可打印图像,包括不同级别的冗余度和已达到的打印机元件间距。我们使用总打印错误的概念来帮助量化打印质量。通过仿真,我们报告了失效或缺失元素的影响。我们还提出了一些误差分析,以解决非理想阵列定位问题。最终,我们认为打印质量应成为确定必要数据速率以支持ML2设备竞争性制造的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号