首页> 外文会议>Symposium on Microcrystalline and Nanocrystalline Semiconductors-1998 held November 30-December 3, 1998, Boston, Massachusetts, U.S.A. >The inverted meyer-neldel rule in the conductance of nanostructured silicon field-effect devices
【24h】

The inverted meyer-neldel rule in the conductance of nanostructured silicon field-effect devices

机译:纳米结构硅场效应器件电导中的反向迈耶-内德尔定律

获取原文
获取原文并翻译 | 示例

摘要

Thin film transistors (TFTs) offer the possibility to study the electronic transport properties of an intrinsic semiconductor as a function of the Fermi level position without the introduction of dopants and/or doping related defects. Recently, we reported on the first TFTs incorporating nanostructured silicon deposited with the Hot-Wire Chemical Vapor Deposition technique. These structures offer significant advantages over conventional plasma-deposited amorphous silicon TFTs. First of all, the HW deposited nanocrystalline silicon (nc-Si:H) TFTs do not show any threshold voltage shift upon prolonged gate voltage stress. Therefore, it is now possible to study the transport characteristics at a relatively large gate voltage in a controlled fashion, unhampered by any drift of the characteristics due to the creation of metastable electronic defect states and/or charge trapping. Second, the result of the field effect is that the Fermi energy moves into the conduction band of the virtually defect-free nanocrystalline domains in the channel region of the TFT. As the effective mobility gap of the surrounding amorphous phase is higher than that of the silicon crystalites, the Fermi energy is driven deep into the band-tail distribution of the amorphous phase, a situation that could never be achieved in purely amorphous silicon TFTs nor by heavily doping an amorphous semiconductor. Thus, the nanostructured nature of the silicon thin film near the gate insulator allows to shift the Fermi level far into the tail states region of the amorphous phase. This situation reveals for the first time the inverted Meyer-Nelded relationship in an intrinsic semiconductor.
机译:薄膜晶体管(TFT)提供了研究本征半导体随费米能级位置变化的电子传输特性的可能性,而无需引入掺杂剂和/或掺杂相关的缺陷。最近,我们报道了第一批采用热线化学气相沉积技术沉积纳米结构硅的TFT。与传统的等离子体沉积非晶硅TFT相比,这些结构具有明显的优势。首先,在延长的栅极电压应力下,HW沉积的纳米晶体硅(nc-Si:H)TFT不会显示任何阈值电压偏移。因此,现在有可能以可控的方式研究相对大的栅极电压下的传输特性,而不受由于亚稳电子缺陷状态和/或电荷陷阱的产生而导致的特性漂移的影响。其次,场效应的结果是费米能移入TFT沟道区中几乎无缺陷的纳米晶域的导带中。由于周围非晶相的有效迁移率间隙比硅晶体的有效迁移率间隙高,费米能量被深深地驱动到非晶相的带尾分布中,这种情况在纯非晶硅TFT中永远无法实现,重掺杂非晶半导体。因此,靠近栅极绝缘体的硅薄膜的纳米结构性质允许将费米能级移动到非晶相的尾态区域。这种情况首次揭示了本征半导体中的迈耶-纽德倒立关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号