首页> 外文学位 >A novel energy based design methodology of sliding mode controllers for tracked autonomous guided vehicles.
【24h】

A novel energy based design methodology of sliding mode controllers for tracked autonomous guided vehicles.

机译:一种用于跟踪自动驾驶车辆的滑模控制器的基于能量的新颖设计方法。

获取原文
获取原文并翻译 | 示例

摘要

Tracked Autonomous Guided Vehicles (TAGVs) are becoming an important tool for surveillance and security operations so as to mitigate harm to human who otherwise have to conduct such operations. To accomplish steering of such tracked vehicles, skid steering is used. This entails varying the speed of the individual tracks to impose a turning moment on the vehicle. In skid steering, the interaction between the tracks and the terrain is in the form of slippage and soil shearing during the process of turning. These phenomena of slippage and soil shearing are highly nonlinear and difficult to quantify. As such they result in inaccurate kinematics/dynamics of the vehicle. Achieving good path tracking performance of the vehicle in the presence of such inaccuracies requires a robust controller design.; Sliding mode Controllers (SMCs) are insensitive to system parameter uncertainties, modeling errors, and disturbances. Such controllers are considered to be robust. Consequently, they have been proposed as the proper choice for this work. One of the major drawbacks of the published approaches of designing SMCs is the need to assume the values of some of the controller parameters. In this thesis, a novel design methodology of SMCs is developed based on the system total energy. This approach provides a relationship between the SMC parameters and some limits on these parameters. However, the choice of the value of these parameters is still wide enough such that the approach of sensitivity analysis is carried out to tighten these limits. Using SMCs result in undesirable chattering. To reduce or eliminate chattering, the boundary layer technique is employed.; The new design methodology of the SMC is exemplified first on a DC motor model where the model is a Single-Input-Single-Output (SISO) system. Since the TAGV is a special case of a Multi-Input-Multi-Output (MIMO) system, an extension of the new SMC approach is developed. Inverted pendulum systems are popular examples in many control text because of the many practical applications they can model, particularly in the field of robotics. The inverted pendulum is a Single-Input-Multi-Output (SIMO) system similar to the TAGV, and is selected to test the new approach. SMC with hyper sliding surface is also introduced. Simulation results of the motor and pendulum show very good performance of the SMC especially when it is compared to that of proportional and proportional-derivative controllers.; Simulation results of the TAGV using SMCs both decoupled and hyper sliding surfaces based on the proposed design methodology show very good performance when compared to that of proportional controllers.
机译:履带自动驾驶车辆(TAGV)正在成为监视和安全操作的重要工具,以减轻对必须执行此类操作的人员的伤害。为了完成这种履带车辆的转向,使用了防滑转向。这需要改变各个轨道的速度以在车辆上施加转弯力矩。在打滑转向中,在转弯过程中,轨道和地形之间的相互作用以滑动和土壤剪切的形式出现。这些滑移和土壤剪切现象是高度非线性的,难以量化。因此,它们导致车辆的运动学/动力学不准确。在存在这样的不准确性的情况下,要实现车辆的良好路径跟踪性能,需要鲁棒的控制器设计。滑模控制器(SMC)对系统参数不确定性,建模误差和干扰不敏感。这样的控制器被认为是鲁棒的。因此,已提出将它们作为这项工作的适当选择。已发布的设计SMC的方法的主要缺点之一是需要假设某些控制器参数的值。本文基于系统总能量,提出了一种新颖的SMC设计方法。这种方法提供了SMC参数与这些参数的某些限制之间的关系。但是,这些参数的值的选择仍然足够广泛,以致于执行了灵敏度分析的方法来收紧这些限制。使用SMC会导致不希望的抖动。为了减少或消除颤动,采用了边界层技术。 SMC的新设计方法首先在DC电动机模型上得到了说明,该模型是单输入单输出(SISO)系统。由于TAGV是多输入多输出(MIMO)系统的特例,因此开发了新SMC方法的扩展。倒立摆系统是许多控制文本中流行的示例,因为它们可以建模许多实际应用,尤其是在机器人技术领域。倒立摆是类似于TAGV的单输入多输出(SIMO)系统,并被选择用于测试新方法。还介绍了具有超滑动表面的SMC。电机和摆锤的仿真结果显示了SMC的非常好的性能,特别是与比例和比例微分控制器相比时。与比例控制器相比,基于拟议的设计方法,使用去耦和超滑表面的SMC进行TAGV的仿真结果显示出非常好的性能。

著录项

  • 作者

    Al-Jarrah, Ahmad Mohammad.;

  • 作者单位

    University of Ottawa (Canada).;

  • 授予单位 University of Ottawa (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号