首页> 外文学位 >Thermo-mechanical interaction within engineered tissue during freezing.
【24h】

Thermo-mechanical interaction within engineered tissue during freezing.

机译:冷冻过程中工程组织内的热机械相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Cryopreservation is the preserving of biological tissues at sub zero temperature. There are many useful applications to cryopreservation such as storing donated organs till they are needed rather than letting them go to waste. When tissues are frozen and thawed, their original functionality and vitality are not usually maintained. It's been shown that when tissue is frozen its mechanical properties change, such as tensile strength and modulus. Each tissue has an extra cellular matrix made up of many collagen fibrils that is responsible for the structural integrity of the tissue. This study is to investigate the structural changes of ECM by freeze/thaw by use of scanning electron microscopy and thermo-mechanical analysis of tissue deformation during freezing. In this experimental study, three types of engineered tissue containing human fibroblast cells were examined for microstructural changes in the collagen ECM. The three types of engineered tissue had variable collagen and cell density. These densities were (1) 3mg/ml of collagen and 200,000 cells/ml, (2) 3mg/ml of collagen and 400,000 cells/ml, and (3) 6mg/ml of collagen and 200,000 cells/ml. Changes in fibril area, mean void area and fibril diameter were to be examined. In this study a thermo-mechanical finite element model was developed to predict the location of the freezing front and possible the deformation rate and dilatation of the engineered tissue during freezing. The results indicated that freezing of ET causes the increase of mean void area of voids between fibrils, and the decrease in the average fibril area and the diameters of the fibrils increased. For the model it was found that the location of the freezing front could be predicted, but dilatation and deformation rates could only be predicted close to the order of magnitude of the experimental results.
机译:冷冻保存是指在低于零温度的情况下保存生物组织。冷冻保存有许多有用的应用程序,例如将捐赠的器官保存到需要时,而不是浪费掉。冷冻和融化组织后,通常无法保持其原始功能和活力。研究表明,冷冻组织时,其机械性能会发生变化,例如抗张强度和模量。每个组织都有一个由许多胶原纤维组成的细胞外基质,负责组织的结构完整性。本研究旨在通过扫描电子显微镜和冷冻过程中组织变形的热机械分析研究冷冻/融化引起的ECM的结构变化。在这项实验研究中,检查了三种包含人成纤维细胞的工程组织的胶原ECM的微结构变化。三种类型的工程组织具有可变的胶原蛋白和细胞密度。这些密度是(1)3mg / ml胶原蛋白和200,000个细胞/ ml,(2)3mg / ml胶原蛋白和400,000个细胞/ ml,以及(3)6mg / ml胶原蛋白和200,000个细胞/ ml。检查原纤维面积,平均空隙面积和原纤维直径的变化。在这项研究中,建立了一个热机械有限元模型来预测冷冻前沿的位置,并预测冷冻过程中工程组织的变形率和膨胀。结果表明,ET的冻结导致原纤维之间的平均空隙面积的增加,平均原纤维面积的减少和原纤维直径的增加。对于该模型,发现可以预测冻结前沿的位置,但只能预测接近实验结果的数量级的膨胀和变形速率。

著录项

  • 作者

    DeHoyos, Tenok.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Engineering Biomedical.;Engineering Mechanical.
  • 学位 M.S.
  • 年度 2009
  • 页码 74 p.
  • 总页数 74
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:38:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号