首页> 外文期刊>IEEE transactions on electronics packaging manufacturing >Recent advances in the development of no-flow underfill encapsulants-a practical approach towards the actual manufacturing application
【24h】

Recent advances in the development of no-flow underfill encapsulants-a practical approach towards the actual manufacturing application

机译:无流动底部填充胶开发的最新进展-一种针对实际制造应用的实用方法

获取原文
获取原文并翻译 | 示例
       

摘要

No-flow underfill technology has been proven to have potential advantages over the conventional underfill technology, and a no-flow underfill material (called G25) has been developed and reported in our prior papers. In this paper, two modified no-flow underfill materials are studied. Compared to the G25 no-flow underfill material, these two materials can be fully post-cured at the temperature below 170/spl deg/C. These two materials also exhibit lower coefficient of thermal expansion (CTE), lower moisture absorption, better adhesion, and more fluxing stability. In this study, a differential scanning calorimetry (DSC) is used to study the curing kinetics and glass transition temperature (DSC Tg) of the two materials. Thermo-mechanical analyzer (TMA) is used to investigate the heat distortion temperature (TMA Tg) and the coefficient of thermal expansion (CTE). Dynamic-mechanical analyzer (DMA) is used to measure the storage modulus (E') and loss modulus (E") within the temperature range from 25/spl deg/C to 250/spl deg/C and then estimate the cross-linking density (p) of the cured material system. Rheometer is used to investigate the material viscosity. Die shear testing is conducted to investigate the adhesive strength between the cured underfill material and polyimide passivation layer. Surface mount technology (SMT) reflow oven, quartz chips and copper laminated FR4 substrates are used to in-situ test the processability of the two materials. Scanning electron microscopy (SEM) is used to observe the integrity of the reflowed solder interconnects. A potential approach toward the production application of no-flow underfill material is then proposed.
机译:与传统的底部填充技术相比,无流动的底部填充技术已被证明具有潜在的优势,并且已经开发出无流动的底部填充材料(称为G25)并在我们的先前论文中进行了报道。本文研究了两种改性的无流动底部填充材料。与G25无流动底部填充材料相比,这两种材料可以在170 / spl deg / C以下的温度下完全后固化。这两种材料还具有较低的热膨胀系数(CTE),较低的吸湿性,较好的附着力和较高的助焊剂稳定性。在这项研究中,差示扫描量热法(DSC)用于研究两种材料的固化动力学和玻璃化转变温度(DSC Tg)。热机械分析仪(TMA)用于研究热变形温度(TMA Tg)和热膨胀系数(CTE)。动态机械分析仪(DMA)用于在25 / spl deg / C至250 / spl deg / C的温度范围内测量储能模量(E')和损耗模量(E“),然后估算交联固化材料系统的密度(p);使用流变仪研究材料粘度;进行模切测试以研究固化的底部填充材料与聚酰亚胺钝化层之间的粘合强度;表面贴装技术(SMT)回流炉,石英芯片FR4和铜层压的FR4基板用于原位测试这两种材料的可加工性,扫描电子显微镜(SEM)用来观察回流的焊料互连的完整性。然后提出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号