...
首页> 外文期刊>Japanese Journal of Applied Physics. Part 1, Regular Papers, Brief Communications & Review Papers >High-Speed Rotating-Disk Chemical Vapor Deposition Process for In-Situ Arsenic-Doped Polycrystalline Silicon Films
【24h】

High-Speed Rotating-Disk Chemical Vapor Deposition Process for In-Situ Arsenic-Doped Polycrystalline Silicon Films

机译:原位砷掺杂多晶硅薄膜的高速旋转盘化学气相沉积工艺

获取原文
获取原文并翻译 | 示例
           

摘要

We have developed high-speed rotating-disk chemical vapor deposition (CVD) equipment for polycrystalline silicon (poly-Si) films. This CVD equipment has an enhanced ability to reduce the boundary layer thickness at a given temperature above a wafer surface, and to suppress vapor-phase reactions. We investigated in-situ arsenic-doped poly-Si film deposition using silane (SiH_4), arsine (AsH_3) and nitrogen (N_2) in a high-speed rotating-disk CVD as functions of AsH_3 flow rate and deposition temperature. Both the deposition rate and resistivity decreased with increasing AsH_3 flow rate. A deposition rate of 120 nm/min, a resistivity of 16 mΩ·cm, a film thickness nonuniformity of ±5%, and a number of particles of less than 20 (over 200 nm in diameter) were achieved at a deposition temperature of 680℃ for in-situ arsenic-doped poly-Si deposition on a 200-mm-diameter silicon (Si) wafer. Moreover, it was confirmed that the concentration of As in the poly-Si film was low at the initial stage of deposition, and that this process has a high gap filling capability in a hole of 0.18 μm width and 7 μm depth. It was also confirmed that there were conditions for a high step coverage of more than 1. These properties are inferred to be due to the adsorbed AsH_3 preventing the adsorption of SiH_4.
机译:我们已经开发了用于多晶硅(poly-Si)薄膜的高速旋转盘化学气相沉积(CVD)设备。该CVD设备具有在晶片表面上方的给定温度下减小边界层厚度并抑制气相反应的增强能力。我们研究了在高速转盘CVD中使用硅烷(SiH_4),砷化氢(AsH_3)和氮(N_2)的原位掺杂砷的多晶硅膜的沉积与AsH_3流量和沉积温度的关系。沉积速率和电阻率均随AsH_3流量的增加而降低。在680的沉积温度下,获得了120 nm / min的沉积速率,16mΩ·cm的电阻率,±5%的膜厚不均匀性以及少于20个(直径超过200 nm)的颗粒数量于200毫米直径的硅(Si)晶圆上原位掺杂砷的多晶硅沉积。此外,已经证实,在沉积的初始阶段,多晶硅膜中的As浓度较低,并且该工艺在宽度为0.18μm和深度为7μm的孔中具有较高的间隙填充能力。还证实了存在大于1的高台阶覆盖率的条件。这些性质被推断为归因于被吸附的AsH_3阻止了SiH_4的吸附。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号