...
首页> 外文期刊>ACS applied materials & interfaces >Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics
【24h】

Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics

机译:具有光刻胶共振的无光刻宽带超薄膜吸收剂,用于有机光伏

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Strategies to confine electromagnetic field within ultrathin film emerge as essential technologies for applications from thin-film solar cells to imaging and sensing devices. We demonstrate a lithography-free, low-cost, large-scale method to realize broadband ultrathi-film metal dielectric-metal (MDM) absorbers, by exploiting gap-plasmon resonances for strongly confined electromagnetic field. A two-steps method, first organizing Au nanoparticles via thermal dewetting and then transferring the nanoparticles to a spacer - reflector substrate, is used to achieve broader absorption bandwidth by manipulating geometric shapes of the top metallic layer into hemiellipsoids. A fast-deposited nominal Au film, instead of a conventional slow one, is employed in the Ostwald ripening process to attain hemiellipsoidal nanoparticles. A polymer supported transferring step allows a wider range of dewetting temperature to manipulate the nanoparticles' shape. By incorporating circularity with ImageJ software, the geometries of hemiellipsoidal nanoparticles are quantitatively characterized. Controlling the top geometry of MDM structure from hemisphere to hemiellipsoid increases the average absorption at 500-900 nm from 23.1% to 43.5% in the ultrathin film and full width at half maximum of 132-324 nm, which is consistently explained by finite-difference time-domain simulation. The structural advantages of our scheme are easily applicable to thin-film photovoltaic devices because metal electrodes can act as metal reflectors and semiconductor layers as dielectric spacers.
机译:限制超薄膜内电磁场的策略已成为从薄膜太阳能电池到成像和传感设备的必不可少的技术。我们展示了一种无光刻,低成本,大规模的方法,该方法可通过利用间隙等离子体激元共振来强约束电磁场来实现宽带超薄膜金属介电金属(MDM)吸收器。分两步的方法,首先通过热去湿将Au纳米粒子组织起来,然后将纳米粒子转移到间隔物-反射器基板上,该方法通过将顶部金属层的几何形状操纵为半椭球体来实现更宽的吸收带宽。在奥斯特瓦尔德(Ostwald)成熟过程中,采用了快速沉积的标称金膜代替了常规的慢速金膜,从而获得了半椭圆形纳米颗粒。聚合物负载的转移步骤允许更大范围的去湿温度以控制纳米颗粒的形状。通过将圆度与ImageJ软件结合,可以对半椭圆形纳米颗粒的几何形状进行定量表征。控制MDM结构从半球到半椭球体的顶部几何形状,可将500-900 nm的超薄薄膜中的平均吸收率从23.1%增加到43.5%,半峰全宽为132-324 nm,这始终由有限差分解释时域仿真。我们的方案的结构优势很容易适用于薄膜光伏器件,因为金属电极可以充当金属反射器,半导体层可以充当介电间隔物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号