首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >A Multipronged Comparative Study of the Ultraviolet Photochemistry of 2-, 3-, and 4-Chlorophenol in the Gas Phase
【24h】

A Multipronged Comparative Study of the Ultraviolet Photochemistry of 2-, 3-, and 4-Chlorophenol in the Gas Phase

机译:气相中2-,3-和4-氯酚的紫外光化学多方面比较研究

获取原文
获取原文并翻译 | 示例
           

摘要

The S-1((1)pi pi*) state of the (dominant) syn-conformer of 2-chlorophenol (2-ClPhOH) in the gas phase has a subpicosecond lifetime, whereas the corresponding S-1 states of 3- and 4-ClPhOH have lifetimes that are, respectively, similar to 2 and similar to 3-orders of magnitude longer. A range of experimental techniqueselectronic spectroscopy, ultrafast time-resolved photoion and photoelectron spectroscopies, H Rydberg atom photofragment translational spectroscopy, velocity map imaging, and time-resolved Fourier transform infrared emission spectroscopy-as well as electronic structure calculations (of key regions of the multidimensional ground (S-0) state potential energy surface (PES) and selected cuts through the first few excited singlet PESs) have been used in the quest to explain these striking differences in excited state lifetime. The intramolecular O-H center dot center dot center dot Cl hydrogen bond specific to syn-2-ClPhOH is key. It encourages partial charge transfer and preferential stabilization of the diabatic (1)pi sigma* potential (relative to that of the (1)pi pi* state) upon stretching the C-Cl bond, with the result that initial C-Cl bond extension on the adiabatic S-1 PES offers an essentially barrierless internal conversion pathway via regions of conical intersection with the S-0 PES. Intramolecular hydrogen bonding is thus seen to facilitate the type of heterolytic dissociation more typically encountered in solution studies.
机译:2-氯苯酚(2-ClPhOH)的(主要)顺式异构体的S-1((1)pi pi *)状态在气相中具有亚皮秒的寿命,而相应的S-1状态为3-和- 4-ClPhOH的寿命分别长于2和3个数量级。一系列实验技术电子光谱学,超快时间分辨光子和光电子能谱,H Rydberg原子光碎片平移光谱学,速度图成像和时间分辨傅立叶变换红外发射光谱学以及电子结构计算(多维关键区域)为了说明这些激发态寿命的显着差异,我们使用了基态(S-0)势能面(PES)和从头几个激发单重态PES的选定切口。特定于syn-2-ClPhOH的分子内O-H中心点中心点中心点Cl氢键是关键。它会在拉伸C-Cl键时促进部分电荷转移并优先释放非绝热的(1)pi sigma *电势(相对于(1)pi pi *状态的电势),结果是初始C-Cl键扩展绝热的S-1 PES上的锥形通道通过与S-0 PES的圆锥形相交区域提供了基本无障碍的内部转化途径。因此,发现分子内氢键促进了溶液研究中更常见的杂化解离类型。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号