首页> 外文期刊>RSC Advances >Bridging structure and mechanics of three-dimensional porous hydrogel with X-ray ultramicroscopy and atomic force microscopy
【24h】

Bridging structure and mechanics of three-dimensional porous hydrogel with X-ray ultramicroscopy and atomic force microscopy

机译:X射线超微镜检查三维多孔水凝胶的桥接结构和力学,原子力显微镜

获取原文
获取原文并翻译 | 示例
           

摘要

The need for an in vitro 3D scaffold that can substitute specific tissue-types is becoming increasingly prevalent in tissue engineering and stem cell research. As a promising candidate for engineered complex 3D tissue scaffolds, hydrogels have emerged as synthetic or natural polymers with tissue-like stiffness, biocompatibility and high permeability for oxygen, nutrients and other water-soluble metabolites, similar to the native extracellular matrix. However, high-resolution characterization of hydrogels and their three-dimensional porous structures still remains a challenge. In this research, hydroxypropyl cellulose methacrylate (HPC-MA) hydrogels were examined for the first time through X-ray ultramicroscopy (XuM), an imaging technique based on phase contrast and with high spatial resolution, to visualise, reconstruct and analyse 3D porous structures. This Scanning Electron Microscopy (SEM) based X-ray system produced projection images of 1.67 mm pixel size, with distinguishable hydrogel membrane structures. In addition, reconstruction of the tomographic series provides the complete geometry of individual pores and their spatial distribution and interconnectivity, which play vital roles in accurate prediction of the hydrogel's porous structure prior to and during its implantation in vivo. By further incorporating Atomic Force Microscopy (AFM), the elastic modulus of the hydrogel was determined and mechanical modelling of individual pores and the bulk scaffold also proved to be feasible. The commercialised platform we utilised offers prompt visualization and specialized simulation of customized 3D scaffolds for cell growth, which will be a unique application of tissue engineering in future personalized medicine.
机译:需要替代特定组织类型的体外3D支架的需要在组织工程和干细胞研究中变得越来越普遍。作为工程化复合3D组织支架的有希望的候选者,水凝胶作为合成或天然聚合物具有与组织状刚度,生物相容性和用于氧气,营养素和其他水溶性代谢物的高渗透性的合成或天然聚合物,类似于天然细胞外基质。然而,水凝胶的高分辨率表征及其三维多孔结构仍然是一个挑战。在该研究中,首次通过X射线超微镜检查(XUM),一种基于相位对比度和高空间分辨率的成像技术来检查羟丙基纤维素(HPC-MA)水凝胶,以便可视化,重建和分析3D多孔结构。该扫描电子显微镜(SEM)基于X射线系统产生1.67mm像素尺寸的投影图像,具有可区分的水凝胶膜结构。此外,断层系列的重建提供了个体孔的完整几何形状及其空间分布和互连,这在其在体内植入前和植入过程中的水凝胶的多孔结构的精确预测中起着重要作用。通过进一步掺入原子力显微镜(AFM),确定水凝胶的弹性模量并确定单个孔的机械建模,并且散装支架也被证明是可行的。我们利用的商业化平台提供了对细胞生长的定制3D支架的迅速可视化和专业仿真,这将是未来个性化医学中的组织工程的独特应用。

著录项

  • 来源
    《RSC Advances》 |2015年第78期|共8页
  • 作者单位

    Monash Univ Dept Mech &

    Aerosp Engn Clayton Vic 3800 Australia;

    Monash Univ Dept Mech &

    Aerosp Engn Clayton Vic 3800 Australia;

    Monash Ctr Electron Microscopy Clayton Vic 3800 Australia;

    Swinburne Univ Technol Dept Biomed Engn Hawthorn Vic 3122 Australia;

    Monash Univ Dept Mech &

    Aerosp Engn Clayton Vic 3800 Australia;

    Swinburne Univ Technol Dept Biomed Engn Hawthorn Vic 3122 Australia;

    Monash Univ Dept Mech &

    Aerosp Engn Clayton Vic 3800 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号