首页> 外文期刊>RSC Advances >Reduced graphene oxide coupled CdS/CoFe2O4 ternary nanohybrid with enhanced photocatalytic activity and stability: a potential role of reduced graphene oxide as a visible light responsive photosensitizer
【24h】

Reduced graphene oxide coupled CdS/CoFe2O4 ternary nanohybrid with enhanced photocatalytic activity and stability: a potential role of reduced graphene oxide as a visible light responsive photosensitizer

机译:还原的氧化石墨烯偶联的CdS / CoFe2O4三元纳米杂化物具有增强的光催化活性和稳定性:还原的氧化石墨烯作为可见光响应型光敏剂的潜在作用

获取原文
获取原文并翻译 | 示例
           

摘要

We report the coupling of a CdS/CoFe2O4 (CdS/CFO) core/shell nanorod heterostructure onto the 2D platform of reduced graphene oxide (RGO) sheets by a facile soft chemical route. Intimate interfacial contact between CdS, CFO and RGO is achieved in the synthesis. The CdS/CFO/RGO nanohybrid exhibits an enhanced photocatalytic activity for the degradation of methylene blue under visible light irradiation. In addition to enhanced photocatalytic activity, this trio-coupled nanocomposite exhibits enhanced photostability and is magnetically separable from an aqueous solution due to the presence of CFO in the composite nanostructure and thus can be used for repeated operations of the photocatalytic process. A mechanism for the enhanced photocatalytic activity of the CdS/CFO/RGO has been proposed where the RGO in the ternary nanocomposite serves as a visible light responsive photosensitizer. Our present work indicates that the careful choice of a semiconductor core-shell nanostructure and its coupling with reduced graphene oxide has great potential in the design of efficient and stable visible light responsive photocatalytic materials.
机译:我们报告了通过简便的软化学路线将CdS / CoFe2O4(CdS / CFO)核/壳纳米棒异质结构耦合到还原的氧化石墨烯(RGO)薄板的2D平台上。在合成过程中,可以实现CdS,CFO和RGO之间的紧密界面接触。 CdS / CFO / RGO纳米杂化物在可见光照射下对亚甲基蓝的降解表现出增强的光催化活性。除了增强的光催化活性之外,由于复合纳米结构中CFO的存在,这种三重耦合的纳米复合材料还具有增强的光稳定性,并且可以从水溶液中磁性分离,因此可以用于光催化过程的重复操作。已经提出了增强CdS / CFO / RGO的光催化活性的机制,其中三元纳米复合材料中的RGO用作可见光响应型光敏剂。我们目前的工作表明,精心选择半导体核-壳纳米结构及其与还原的氧化石墨烯的耦合在设计高效,稳定的可见光响应型光催化材料方面具有巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号